STRINGSTRING
FMO1 protein (Saccharomyces cerevisiae) - STRING interaction network
"FMO1" - Flavin-containing monooxygenase, localized to the cytoplasmic face of the ER membrane in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
FMO1Flavin-containing monooxygenase, localized to the cytoplasmic face of the ER membrane; catalyzes oxidation of biological thiols to maintain the ER redox buffer ratio for correct folding of disulfide-bonded proteins; Flavin-dependent oxidation of thiol-containing compounds. Probably required for the correct folding of disulfide- bonded proteins (432 aa)    
Predicted Functional Partners:
PMS1
ATP-binding protein required for mismatch repair in mitosis and meiosis; functions as a heterodimer with Mlh1p, binds double- and single-stranded DNA via its N-terminal domain, similar to E. coli MutL; Required for DNA mismatch repair (MMR), correcting base- base mismatches and insertion-deletion loops (IDLs) resulting from DNA replication, DNA damage or from recombination events between non-identical sequences during meiosis. Component of the MutLalpha heterodimer that forms a ternary complex with the MutS heterodimers, which initially recognize the DNA mismatches. This complex is tho [...] (873 aa)
       
      0.780
COQ6
Putative flavin-dependent monooxygenase; involved in ubiquinone (Coenzyme Q) biosynthesis; localizes to the matrix face of the mitochondrial inner membrane in a large complex with other ubiquinone biosynthetic enzymes; human COX6 can rescue a yeast /.../utant and is implicated in steroid-resistant nephrotic syndrome (SRNS); FAD-dependent monooxygenase required for the C5-ring hydroxylation during ubiquinone biosynthesis. Catalyzes the hydroxylation of 3-hexaprenyl-4-hydroxybenzoic acid (HHB) to 3- hexaprenyl-4,5-dihydroxybenzoic acid (DHHB). The electrons required for the hydroxylatio [...] (479 aa)
       
 
  0.744
COQ5
2-hexaprenyl-6-methoxy-1,4-benzoquinone methyltransferase, involved in ubiquinone (Coenzyme Q) biosynthesis; localizes to the matrix face of the mitochondrial inner membrane in a large complex with other ubiquinone biosynthetic enzymes; Methyltransferase required for the conversion of 2- polyprenyl-6-methoxy-1,4-benzoquinol (DDMQH2) to 2-polyprenyl-3- methyl-6-methoxy-1,4-benzoquinol (DMQH2) (307 aa)
         
  0.743
MNL1
Alpha-1,2-specific exomannosidase of the endoplasmic reticulum; in complex with Pdi1p, generates a Man7GlcNac2 oligosaccharide signal on glycoproteins destined for ubiquitin-proteasome degradation; Alpha-1,2-specific exomannosidase involved in endoplasmic reticulum-associated degradation (ERAD). Delivers misfolded glycoproteins to proteasomes. Forms a complex with PDI1 to process unfolded protein-bound Man8GlcNAc2 oligosaccharides to Man7GlcNAc2, promoting degradation in unfolded protein response (796 aa)
       
      0.673
VMA4
Subunit E of the eight-subunit V1 peripheral membrane domain of the vacuolar H+-ATPase (V-ATPase), an electrogenic proton pump found throughout the endomembrane system; required for the V1 domain to assemble onto the vacuolar membrane; Subunit of the peripheral V1 complex of vacuolar ATPase essential for assembly or catalytic function. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells (233 aa)
       
      0.671
COQ8
Protein required for ubiquinone (coenzyme Q) biosynthesis and for respiratory growth; exhibits genetic interaction with COQ9, suggesting a common function; similar to prokaryotic proteins involved in early steps of ubiquinone biosynthesis; Atypical kinase involved in the biosynthesis of coenzyme Q, also named ubiquinone, an essential lipid-soluble electron transporter for aerobic cellular respiration. Affects the molecular organization and function of COQ3, possibly through kinase activity towards COQ3, COQ5 and/or COQ7 (PubMed-11279158, PubMed-15063807, PubMed-1648478, PubMed-18801050 [...] (501 aa)
           
  0.653
YOS9
ER quality-control lectin; integral subunit of the HRD ligase; binds to glycans with terminal alpha-1,6 linked mannose on misfolded N-glycosylated proteins and participates in targeting proteins to ERAD; member of the OS-9 protein family; Lectin involved in the quality control of the secretory pathway. As a member of the endoplasmic reticulum-associated degradation lumenal (ERAD-L) surveillance system, targets misfolded endoplasmic reticulum lumenal glycoproteins for degradation. The recognition of targets is N-glycan specific (542 aa)
       
      0.650
ERG5
C-22 sterol desaturase, a cytochrome P450 enzyme that catalyzes the formation of the C-22(23) double bond in the sterol side chain in ergosterol biosynthesis; may be a target of azole antifungal drugs; Required to form the C-22(23) double bond in the sterol side chain (538 aa)
     
 
  0.605
DIT2
N-formyltyrosine oxidase, sporulation-specific microsomal enzyme involved in the production of N,N-bisformyl dityrosine required for spore wall maturation, homologous to cytochrome P-450s; Involved in spore wall maturation. Thought to catalyze the oxidation of tyrosine residues in the formation of LL- dityrosine a precursor of the spore wall (489 aa)
     
 
  0.603
ERG11
Lanosterol 14-alpha-demethylase; catalyzes the C-14 demethylation of lanosterol to form 4,4’’-dimethyl cholesta-8,14,24-triene-3-beta-ol in the ergosterol biosynthesis pathway; member of the cytochrome P450 family; associated and coordinately regula /.../th the P450 reductase Ncp1p; Catalyzes C14-demethylation of lanosterol which is critical for ergosterol biosynthesis. It transforms lanosterol into 4,4’-dimethyl cholesta-8,14,24-triene-3-beta-ol (530 aa)
 
 
 
  0.589
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (2%) [HD]