STRINGSTRING
RGI2 protein (Saccharomyces cerevisiae) - STRING interaction network
"RGI2" - Protein of unknown function involved in energy metabolism under respiratory conditions in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
RGI2Protein of unknown function involved in energy metabolism under respiratory conditions; expression induced under carbon limitation and repressed under high glucose; Involved in the control of energetic metabolism and significantly contribute to cell fitness, especially under respiratory growth conditions (164 aa)    
Predicted Functional Partners:
ADY2
Acetate transporter required for normal sporulation; phosphorylated in mitochondria; Transporter protein required for ammonia export and acetate uptake and resistance. Necessary for up-regulation and down-regulation of meiotic plaque (MP) component levels in a dependency on external acetate. Has a role in ascus formation (283 aa)
     
   
  0.882
JEN1
Monocarboxylate/proton symporter of the plasma membrane; transport activity is dependent on the pH gradient across the membrane; mediates high-affinity uptake of carbon sources lactate, pyuvate, and acetate, and also of the micronutrient selenite, w /.../tructure mimics that of monocarboxylates; expression and localization are tightly regulated, with transcription repression, mRNA degradation, and protein endocytosis and degradation all occurring in the presence of glucose; Essential to lactate transport (616 aa)
     
   
  0.767
YMR206W
Putative protein of unknown function; YMR206W is not an essential gene (313 aa)
     
   
  0.719
ACS1
Acetyl-coA synthetase isoform which, along with Acs2p, is the nuclear source of acetyl-coA for histone acetylation; expressed during growth on nonfermentable carbon sources and under aerobic conditions; Catalyzes the production of acetyl-CoA. Provides the acetyl-CoA source for histone acetylation in the nucleus. "Aerobic" isozyme of acetyl-coenzyme A synthetase, which supports growth on nonfermentable carbon sources such as glycerol and ethanol. May be required for assimilation of ethanol and acetate (713 aa)
     
   
  0.677
REG2
Regulatory subunit of the Glc7p type-1 protein phosphatase; involved with Reg1p, Glc7p, and Snf1p in regulation of glucose-repressible genes, also involved in glucose-induced proteolysis of maltose permease; Regulatory subunit, binds to type-1 protein phosphatase. Functions with HEX2/REG1 and SNF1 protein kinase to regulate growth. Might regulate SNF1 directly or indirectly (338 aa)
     
   
  0.612
FBP1
Fructose-1,6-bisphosphatase, key regulatory enzyme in the gluconeogenesis pathway, required for glucose metabolism; undergoes either proteasome-mediated or autophagy-mediated degradation depending on growth conditions; interacts with Vid30p (348 aa)
     
   
  0.575
MLS1
Malate synthase, enzyme of the glyoxylate cycle, involved in utilization of non-fermentable carbon sources; expression is subject to carbon catabolite repression; localizes in peroxisomes during growth in oleic acid medium; This isozyme is necessary for growth on acetate as sole C-source (554 aa)
     
   
  0.512
CTA1
Catalase A, breaks down hydrogen peroxide in the peroxisomal matrix formed by acyl-CoA oxidase (Pox1p) during fatty acid beta-oxidation; Occurs in almost all aerobically respiring organisms and serves to protect cells from the toxic effects of hydrogen peroxide (515 aa)
     
   
  0.499
CIT3
Dual specificity mitochondrial citrate and methylcitrate synthase; catalyzes the condensation of acetyl-CoA and oxaloacetate to form citrate and that of propionyl-CoA and oxaloacetate to form 2-methylcitrate; Dual specificity mitochondrial citrate and methylcitrate synthase with similar catalytic efficiency with both acetyl-CoA and propionyl-CoA (486 aa)
     
   
  0.498
ICL1
Isocitrate lyase, catalyzes the formation of succinate and glyoxylate from isocitrate, a key reaction of the glyoxylate cycle; expression of ICL1 is induced by growth on ethanol and repressed by growth on glucose; Catalyzes the formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle. Required for growth on ethanol or acetate, but dispensable when fermentable carbon sources are available. Acts also on 2- methylisocitrate (557 aa)
     
   
  0.482
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (4%) [HD]