STRINGSTRING
MET28 protein (Saccharomyces cerevisiae) - STRING interaction network
"MET28" - bZIP transcriptional activator in the Cbf1p-Met4p-Met28p complex in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
MET28bZIP transcriptional activator in the Cbf1p-Met4p-Met28p complex; participates in the regulation of sulfur metabolism; Acts as an accessory factor in the activation of sulfur amino acids metabolism genes. Possesses no intrinsic transcription activation abilities. Binds to the MET16 promoter as a complex with MET4 and CBF1. Enhances the DNA-binding activity of CBF1 (187 aa)    
Predicted Functional Partners:
MET4
Leucine-zipper transcriptional activator, responsible for the regulation of the sulfur amino acid pathway, requires different combinations of the auxiliary factors Cbf1p, Met28p, Met31p and Met32p; Positive trans-acting factor capable of stimulating the transcription of the MET genes from the methionine biosynthetic pathway. MET4, MET28 and CBF1 are required for full induction of MET25 and MET16 gene transcription. MET4 controls as well the derepression of MET6. Required for the transcription of genes necessary for sulfur amino acid biosynthesis. Involved in the transcription activatio [...] (672 aa)
       
  0.998
CBF1
Dual function helix-loop-helix protein; binds the motif CACRTG present at several sites including MET gene promoters and centromere DNA element I (CDEI); affects nucleosome positioning at this motif; associates with other transcription factors such /.../4p and Isw1p to mediate transcriptional activation or repression; associates with kinetochore proteins and required for efficient chromosome segregation; Required for chromosome stability and methionine prototrophy. It is involved in chromosomal segregation. Binds to a highly conserved DNA sequence (5’-RTCACRTG-3’), called CDEI, found [...] (351 aa)
       
  0.997
MET2
L-homoserine-O-acetyltransferase, catalyzes the conversion of homoserine to O-acetyl homoserine which is the first step of the methionine biosynthetic pathway (486 aa)
     
   
  0.975
STR3
Peroxisomal cystathionine beta-lyase, converts cystathionine into homocysteine; may be redox regulated by Gto1p (465 aa)
     
   
  0.960
MET32
Zinc-finger DNA-binding protein, involved in transcriptional regulation of the methionine biosynthetic genes, similar to Met31p; Auxiliary transcriptional regulator of sulfur amino acid metabolism. Involved in the transcriptional activation of MET28 (191 aa)
     
   
  0.933
MET16
3’-phosphoadenylsulfate reductase, reduces 3’-phosphoadenylyl sulfate to adenosine-3’,5’-bisphosphate and free sulfite using reduced thioredoxin as cosubstrate, involved in sulfate assimilation and methionine metabolism; The NADP dependent reduction of PAPS into sulfite involves thioredoxin which probably plays the role of a thiol carrier (261 aa)
     
   
  0.925
MET31
Zinc-finger DNA-binding protein, involved in transcriptional regulation of the methionine biosynthetic genes, similar to Met32p; Auxiliary transcriptional regulator of sulfur amino acid metabolism. Involved in the transcriptional activation of MET28 (177 aa)
       
 
  0.905
SUL2
High affinity sulfate permease; sulfate uptake is mediated by specific sulfate transporters Sul1p and Sul2p, which control the concentration of endogenous activated sulfate intermediates; High affinity uptake of sulfate into the cell (893 aa)
     
   
  0.870
MET1
S-adenosyl-L-methionine uroporphyrinogen III transmethylase, involved in the biosynthesis of siroheme, a prosthetic group used by sulfite reductase; required for sulfate assimilation and methionine biosynthesis; Siroheme synthase involved in methionine biosynthesis (593 aa)
     
   
  0.858
MET10
Subunit alpha of assimilatory sulfite reductase, which converts sulfite into sulfide; This enzyme catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate (1035 aa)
     
   
  0.757
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (11%) [HD]