STRINGSTRING
DAL1 protein (Saccharomyces cerevisiae) - STRING interaction network
"DAL1" - Allantoinase, converts allantoin to allantoate in the first step of allantoin degradation in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
DAL1Allantoinase, converts allantoin to allantoate in the first step of allantoin degradation; expression sensitive to nitrogen catabolite repression; Utilization of purines as secondary nitrogen sources, when primary sources are limiting (460 aa)    
Predicted Functional Partners:
URA2
Bifunctional carbamoylphosphate synthetase/aspartate transcarbamylase; catalyzes the first two enzymatic steps in the de novo biosynthesis of pyrimidines; both activities are subject to feedback inhibition by UTP; This protein is a "fusion" protein encoding three enzymatic activities of the pyrimidine pathway (GATase, CPSase, and ATCase) (2214 aa)
 
  0.999
DAL2
Allantoicase, converts allantoate to urea and ureidoglycolate in the second step of allantoin degradation; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation; Utilization of purines as secondary nitrogen sources, when primary sources are limiting (343 aa)
   
 
  0.998
GLT1
NAD(+)-dependent glutamate synthase (GOGAT), synthesizes glutamate from glutamine and alpha-ketoglutarate; with Gln1p, forms the secondary pathway for glutamate biosynthesis from ammonia; expression regulated by nitrogen source; Forms L-glutamate from L-glutamine and 2-oxoglutarate. Represents an alternative pathway to L-glutamate dehydrogenase for the biosynthesis of L-glutamate. Participates with glutamine synthetase in ammonia assimilation processes. The enzyme is specific for NADH, L-glutamine and 2-oxoglutarate (2145 aa)
   
  0.980
CPA2
Large subunit of carbamoyl phosphate synthetase, which catalyzes a step in the synthesis of citrulline, an arginine precursor (1118 aa)
 
  0.980
ADE6
Formylglycinamidine-ribonucleotide (FGAM)-synthetase, catalyzes a step in the ’de novo’ purine nucleotide biosynthetic pathway; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate (By similarity) (1358 aa)
   
   
  0.977
DAL4
Allantoin permease; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation; Transport of allantoin (635 aa)
 
   
  0.974
CPA1
Small subunit of carbamoyl phosphate synthetase, which catalyzes a step in the synthesis of citrulline, an arginine precursor; translationally regulated by an attenuator peptide encoded by YOR302W within the CPA1 mRNA 5’-leader (411 aa)
 
 
  0.961
URA1
Dihydroorotate dehydrogenase, catalyzes the fourth enzymatic step in the de novo biosynthesis of pyrimidines, converting dihydroorotic acid into orotic acid; Catalyzes the conversion of dihydroorotate to orotate with fumarate as the electron acceptor. Molecular oxygen can replace fumarate in vitro. Does not use oxaloacetate or NAD or NADP as electron acceptors (314 aa)
   
  0.960
DUR1,2
Urea amidolyase, contains both urea carboxylase and allophanate hydrolase activities, degrades urea to CO2 and NH3; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation; Hydrolysis of urea to ammonia and CO(2) (1835 aa)
       
  0.959
ARG3
Ornithine carbamoyltransferase; also known as carbamoylphosphate-L-ornithine carbamoyltransferase; catalyzes the biosynthesis of the arginine precursor citrulline (338 aa)
     
  0.942
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (10%) [HD]