STRINGSTRING
DAL7 protein (Saccharomyces cerevisiae) - STRING interaction network
"DAL7" - Malate synthase, role in allantoin degradation unknown in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
DAL7Malate synthase, role in allantoin degradation unknown; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation; This isozyme is involved in the degradation of allantoin (purine catabolism) (554 aa)    
Predicted Functional Partners:
ICL1
Isocitrate lyase, catalyzes the formation of succinate and glyoxylate from isocitrate, a key reaction of the glyoxylate cycle; expression of ICL1 is induced by growth on ethanol and repressed by growth on glucose; Catalyzes the formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle. Required for growth on ethanol or acetate, but dispensable when fermentable carbon sources are available. Acts also on 2- methylisocitrate (557 aa)
 
 
  0.999
ICL2
2-methylisocitrate lyase of the mitochondrial matrix, functions in the methylcitrate cycle to catalyze the conversion of 2-methylisocitrate to succinate and pyruvate; ICL2 transcription is repressed by glucose and induced by ethanol; Catalyzes the formation of pyruvate and succinate from 2-methylisocitrate during the metabolism of endogenous propionyl- CoA. Does not act on isocitrate (575 aa)
 
 
  0.999
ACS1
Acetyl-coA synthetase isoform which, along with Acs2p, is the nuclear source of acetyl-coA for histone acetylation; expressed during growth on nonfermentable carbon sources and under aerobic conditions; Catalyzes the production of acetyl-CoA. Provides the acetyl-CoA source for histone acetylation in the nucleus. "Aerobic" isozyme of acetyl-coenzyme A synthetase, which supports growth on nonfermentable carbon sources such as glycerol and ethanol. May be required for assimilation of ethanol and acetate (713 aa)
     
 
  0.984
ACS2
Acetyl-coA synthetase isoform which, along with Acs1p, is the nuclear source of acetyl-coA for histone acetylation; mutants affect global transcription; required for growth on glucose; expressed under anaerobic conditions; Catalyzes the production of acetyl-CoA. Provides the acetyl-CoA source for histone acetylation in the nucleus. "Anaerobic" isozyme of acetyl-coenzyme A synthetase, which is required for growth on fermentable carbon sources such as glucose. May be involved in the PDH (pyruvate dehydrogenase complex) bypass (683 aa)
     
 
  0.981
MDH3
Peroxisomal malate dehydrogenase, catalyzes interconversion of malate and oxaloacetate; involved in the glyoxylate cycle (343 aa)
     
 
  0.973
MDH2
Cytoplasmic malate dehydrogenase, one of three isozymes that catalyze interconversion of malate and oxaloacetate; involved in the glyoxylate cycle and gluconeogenesis during growth on two-carbon compounds; interacts with Pck1p and Fbp1; The isoenzyme MDH2 may function primarily in the glyoxylate cycle (377 aa)
     
 
  0.972
MDH1
Mitochondrial malate dehydrogenase, catalyzes interconversion of malate and oxaloacetate; involved in the tricarboxylic acid (TCA) cycle; phosphorylated (334 aa)
     
 
  0.971
DAL3
Ureidoglycolate hydrolase, converts ureidoglycolate to glyoxylate and urea in the third step of allantoin degradation; expression sensitive to nitrogen catabolite repression; Catalyzes the catabolism of the allantoin degradation intermediate (S)-ureidoglycolate, generating urea and glyoxylate. Involved in the utilization of allantoin as secondary nitrogen source when primary sources are limiting (195 aa)
   
 
  0.970
MAE1
Mitochondrial malic enzyme, catalyzes the oxidative decarboxylation of malate to pyruvate, which is a key intermediate in sugar metabolism and a precursor for synthesis of several amino acids (669 aa)
       
  0.968
CIT2
Citrate synthase, catalyzes the condensation of acetyl coenzyme A and oxaloacetate to form citrate, peroxisomal isozyme involved in glyoxylate cycle; expression is controlled by Rtg1p and Rtg2p transcription factors (460 aa)
     
 
  0.952
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (7%) [HD]