node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ACS1 | AGX1 | YAL054C | YFL030W | Acetyl-coA synthetase isoform; along with Acs2p, acetyl-coA synthetase isoform is the nuclear source of acetyl-coA for histone acetylation; expressed during growth on nonfermentable carbon sources and under aerobic conditions; Belongs to the ATP-dependent AMP-binding enzyme family | Alanine-glyoxylate transaminase / serine-glyoxylate transaminase / serine-pyruvate transaminase; Alanine--glyoxylate aminotransferase 1; Alanine:glyoxylate aminotransferase (AGT); catalyzes the synthesis of glycine from glyoxylate, which is one of three pathways for glycine biosynthesis in yeast; similar to mammalian and plant alanine:glyoxylate aminotransferases; human homolog AGXT complements yeast null mutant; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family | 0.471 |
ACS1 | CIT1 | YAL054C | YNR001C | Acetyl-coA synthetase isoform; along with Acs2p, acetyl-coA synthetase isoform is the nuclear source of acetyl-coA for histone acetylation; expressed during growth on nonfermentable carbon sources and under aerobic conditions; Belongs to the ATP-dependent AMP-binding enzyme family | Citrate synthase, mitochondrial; Citrate synthase; catalyzes the condensation of acetyl coenzyme A and oxaloacetate to form citrate; the rate-limiting enzyme of the TCA cycle; nuclear encoded mitochondrial protein; CIT1 has a paralog, CIT2, that arose from the whole genome duplication | 0.990 |
ACS1 | CIT2 | YAL054C | YCR005C | Acetyl-coA synthetase isoform; along with Acs2p, acetyl-coA synthetase isoform is the nuclear source of acetyl-coA for histone acetylation; expressed during growth on nonfermentable carbon sources and under aerobic conditions; Belongs to the ATP-dependent AMP-binding enzyme family | Citrate synthase, peroxisomal isozyme involved in glyoxylate cycle; catalyzes condensation of acetyl coenzyme A and oxaloacetate to form citrate; expression is controlled by Rtg1p and Rtg2p transcription factors; SCF-Ucc1 regulates level of Cit2p to maintain citrate homeostasis; oxaloacetate-dependent positive feedback loop inhibits Cit2p ubiquitination; CIT2 has a paralog, CIT1, that arose from the whole genome duplication | 0.993 |
ACS1 | DAL7 | YAL054C | YIR031C | Acetyl-coA synthetase isoform; along with Acs2p, acetyl-coA synthetase isoform is the nuclear source of acetyl-coA for histone acetylation; expressed during growth on nonfermentable carbon sources and under aerobic conditions; Belongs to the ATP-dependent AMP-binding enzyme family | Malate synthase; can accept butyryl-CoA as acyl-CoA donor in addition to traditional substrate acetyl-CoA; recycles glyoxylate generated during allantoin degradation; SWAT-GFP and mCherry fusion proteins localize to the cytosol; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation | 0.973 |
ACS1 | ICL1 | YAL054C | YER065C | Acetyl-coA synthetase isoform; along with Acs2p, acetyl-coA synthetase isoform is the nuclear source of acetyl-coA for histone acetylation; expressed during growth on nonfermentable carbon sources and under aerobic conditions; Belongs to the ATP-dependent AMP-binding enzyme family | Isocitrate lyase; catalyzes the formation of succinate and glyoxylate from isocitrate, a key reaction of the glyoxylate cycle; expression of ICL1 is induced by growth on ethanol and repressed by growth on glucose | 0.974 |
ACS1 | ICL2 | YAL054C | YPR006C | Acetyl-coA synthetase isoform; along with Acs2p, acetyl-coA synthetase isoform is the nuclear source of acetyl-coA for histone acetylation; expressed during growth on nonfermentable carbon sources and under aerobic conditions; Belongs to the ATP-dependent AMP-binding enzyme family | 2-methylisocitrate lyase of the mitochondrial matrix; functions in the methylcitrate cycle to catalyze the conversion of 2-methylisocitrate to succinate and pyruvate; ICL2 transcription is repressed by glucose and induced by ethanol | 0.690 |
ACS1 | MAE1 | YAL054C | YKL029C | Acetyl-coA synthetase isoform; along with Acs2p, acetyl-coA synthetase isoform is the nuclear source of acetyl-coA for histone acetylation; expressed during growth on nonfermentable carbon sources and under aerobic conditions; Belongs to the ATP-dependent AMP-binding enzyme family | Malate dehydrogenase (oxaloacetate-decarboxylating); Mitochondrial malic enzyme; catalyzes the oxidative decarboxylation of malate to pyruvate, which is a key intermediate in sugar metabolism and a precursor for synthesis of several amino acids | 0.657 |
ACS1 | MDH3 | YAL054C | YDL078C | Acetyl-coA synthetase isoform; along with Acs2p, acetyl-coA synthetase isoform is the nuclear source of acetyl-coA for histone acetylation; expressed during growth on nonfermentable carbon sources and under aerobic conditions; Belongs to the ATP-dependent AMP-binding enzyme family | Peroxisomal malate dehydrogenase; catalyzes interconversion of malate and oxaloacetate; involved in the glyoxylate cycle | 0.693 |
AGX1 | ACS1 | YFL030W | YAL054C | Alanine-glyoxylate transaminase / serine-glyoxylate transaminase / serine-pyruvate transaminase; Alanine--glyoxylate aminotransferase 1; Alanine:glyoxylate aminotransferase (AGT); catalyzes the synthesis of glycine from glyoxylate, which is one of three pathways for glycine biosynthesis in yeast; similar to mammalian and plant alanine:glyoxylate aminotransferases; human homolog AGXT complements yeast null mutant; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family | Acetyl-coA synthetase isoform; along with Acs2p, acetyl-coA synthetase isoform is the nuclear source of acetyl-coA for histone acetylation; expressed during growth on nonfermentable carbon sources and under aerobic conditions; Belongs to the ATP-dependent AMP-binding enzyme family | 0.471 |
AGX1 | DAL3 | YFL030W | YIR032C | Alanine-glyoxylate transaminase / serine-glyoxylate transaminase / serine-pyruvate transaminase; Alanine--glyoxylate aminotransferase 1; Alanine:glyoxylate aminotransferase (AGT); catalyzes the synthesis of glycine from glyoxylate, which is one of three pathways for glycine biosynthesis in yeast; similar to mammalian and plant alanine:glyoxylate aminotransferases; human homolog AGXT complements yeast null mutant; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family | Ureidoglycolate lyase; converts ureidoglycolate to glyoxylate and urea in the third step of allantoin degradation; expression is sensitive to nitrogen catabolite repression; this enzyme is sometimes referred to "ureidoglycolate hydrolase" but should not be confused with the Arabidopsis thaliana ureidoglycolate hydrolase enzyme which converts ureidoglycolate to glyoxylate, ammonia and carbon dioxide | 0.800 |
AGX1 | DAL7 | YFL030W | YIR031C | Alanine-glyoxylate transaminase / serine-glyoxylate transaminase / serine-pyruvate transaminase; Alanine--glyoxylate aminotransferase 1; Alanine:glyoxylate aminotransferase (AGT); catalyzes the synthesis of glycine from glyoxylate, which is one of three pathways for glycine biosynthesis in yeast; similar to mammalian and plant alanine:glyoxylate aminotransferases; human homolog AGXT complements yeast null mutant; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family | Malate synthase; can accept butyryl-CoA as acyl-CoA donor in addition to traditional substrate acetyl-CoA; recycles glyoxylate generated during allantoin degradation; SWAT-GFP and mCherry fusion proteins localize to the cytosol; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation | 0.964 |
AGX1 | GOR1 | YFL030W | YNL274C | Alanine-glyoxylate transaminase / serine-glyoxylate transaminase / serine-pyruvate transaminase; Alanine--glyoxylate aminotransferase 1; Alanine:glyoxylate aminotransferase (AGT); catalyzes the synthesis of glycine from glyoxylate, which is one of three pathways for glycine biosynthesis in yeast; similar to mammalian and plant alanine:glyoxylate aminotransferases; human homolog AGXT complements yeast null mutant; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family | Glyoxylate reductase; null mutation results in increased biomass after diauxic shift; the authentic, non-tagged protein is detected in highly purified mitochondria in high-throughput studies; protein abundance increases in response to DNA replication stress; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family | 0.993 |
AGX1 | ICL1 | YFL030W | YER065C | Alanine-glyoxylate transaminase / serine-glyoxylate transaminase / serine-pyruvate transaminase; Alanine--glyoxylate aminotransferase 1; Alanine:glyoxylate aminotransferase (AGT); catalyzes the synthesis of glycine from glyoxylate, which is one of three pathways for glycine biosynthesis in yeast; similar to mammalian and plant alanine:glyoxylate aminotransferases; human homolog AGXT complements yeast null mutant; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family | Isocitrate lyase; catalyzes the formation of succinate and glyoxylate from isocitrate, a key reaction of the glyoxylate cycle; expression of ICL1 is induced by growth on ethanol and repressed by growth on glucose | 0.982 |
AGX1 | ICL2 | YFL030W | YPR006C | Alanine-glyoxylate transaminase / serine-glyoxylate transaminase / serine-pyruvate transaminase; Alanine--glyoxylate aminotransferase 1; Alanine:glyoxylate aminotransferase (AGT); catalyzes the synthesis of glycine from glyoxylate, which is one of three pathways for glycine biosynthesis in yeast; similar to mammalian and plant alanine:glyoxylate aminotransferases; human homolog AGXT complements yeast null mutant; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family | 2-methylisocitrate lyase of the mitochondrial matrix; functions in the methylcitrate cycle to catalyze the conversion of 2-methylisocitrate to succinate and pyruvate; ICL2 transcription is repressed by glucose and induced by ethanol | 0.929 |
AGX1 | MDH3 | YFL030W | YDL078C | Alanine-glyoxylate transaminase / serine-glyoxylate transaminase / serine-pyruvate transaminase; Alanine--glyoxylate aminotransferase 1; Alanine:glyoxylate aminotransferase (AGT); catalyzes the synthesis of glycine from glyoxylate, which is one of three pathways for glycine biosynthesis in yeast; similar to mammalian and plant alanine:glyoxylate aminotransferases; human homolog AGXT complements yeast null mutant; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family | Peroxisomal malate dehydrogenase; catalyzes interconversion of malate and oxaloacetate; involved in the glyoxylate cycle | 0.466 |
CIT1 | ACS1 | YNR001C | YAL054C | Citrate synthase, mitochondrial; Citrate synthase; catalyzes the condensation of acetyl coenzyme A and oxaloacetate to form citrate; the rate-limiting enzyme of the TCA cycle; nuclear encoded mitochondrial protein; CIT1 has a paralog, CIT2, that arose from the whole genome duplication | Acetyl-coA synthetase isoform; along with Acs2p, acetyl-coA synthetase isoform is the nuclear source of acetyl-coA for histone acetylation; expressed during growth on nonfermentable carbon sources and under aerobic conditions; Belongs to the ATP-dependent AMP-binding enzyme family | 0.990 |
CIT1 | CIT2 | YNR001C | YCR005C | Citrate synthase, mitochondrial; Citrate synthase; catalyzes the condensation of acetyl coenzyme A and oxaloacetate to form citrate; the rate-limiting enzyme of the TCA cycle; nuclear encoded mitochondrial protein; CIT1 has a paralog, CIT2, that arose from the whole genome duplication | Citrate synthase, peroxisomal isozyme involved in glyoxylate cycle; catalyzes condensation of acetyl coenzyme A and oxaloacetate to form citrate; expression is controlled by Rtg1p and Rtg2p transcription factors; SCF-Ucc1 regulates level of Cit2p to maintain citrate homeostasis; oxaloacetate-dependent positive feedback loop inhibits Cit2p ubiquitination; CIT2 has a paralog, CIT1, that arose from the whole genome duplication | 0.995 |
CIT1 | DAL7 | YNR001C | YIR031C | Citrate synthase, mitochondrial; Citrate synthase; catalyzes the condensation of acetyl coenzyme A and oxaloacetate to form citrate; the rate-limiting enzyme of the TCA cycle; nuclear encoded mitochondrial protein; CIT1 has a paralog, CIT2, that arose from the whole genome duplication | Malate synthase; can accept butyryl-CoA as acyl-CoA donor in addition to traditional substrate acetyl-CoA; recycles glyoxylate generated during allantoin degradation; SWAT-GFP and mCherry fusion proteins localize to the cytosol; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation | 0.969 |
CIT1 | GOR1 | YNR001C | YNL274C | Citrate synthase, mitochondrial; Citrate synthase; catalyzes the condensation of acetyl coenzyme A and oxaloacetate to form citrate; the rate-limiting enzyme of the TCA cycle; nuclear encoded mitochondrial protein; CIT1 has a paralog, CIT2, that arose from the whole genome duplication | Glyoxylate reductase; null mutation results in increased biomass after diauxic shift; the authentic, non-tagged protein is detected in highly purified mitochondria in high-throughput studies; protein abundance increases in response to DNA replication stress; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family | 0.488 |
CIT1 | ICL1 | YNR001C | YER065C | Citrate synthase, mitochondrial; Citrate synthase; catalyzes the condensation of acetyl coenzyme A and oxaloacetate to form citrate; the rate-limiting enzyme of the TCA cycle; nuclear encoded mitochondrial protein; CIT1 has a paralog, CIT2, that arose from the whole genome duplication | Isocitrate lyase; catalyzes the formation of succinate and glyoxylate from isocitrate, a key reaction of the glyoxylate cycle; expression of ICL1 is induced by growth on ethanol and repressed by growth on glucose | 0.929 |