STRINGSTRING
DAL3 protein (Saccharomyces cerevisiae) - STRING interaction network
"DAL3" - Ureidoglycolate hydrolase, converts ureidoglycolate to glyoxylate and urea in the third step of allantoin degradation in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
DAL3Ureidoglycolate hydrolase, converts ureidoglycolate to glyoxylate and urea in the third step of allantoin degradation; expression sensitive to nitrogen catabolite repression; Catalyzes the catabolism of the allantoin degradation intermediate (S)-ureidoglycolate, generating urea and glyoxylate. Involved in the utilization of allantoin as secondary nitrogen source when primary sources are limiting (195 aa)    
Predicted Functional Partners:
DAL2
Allantoicase, converts allantoate to urea and ureidoglycolate in the second step of allantoin degradation; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation; Utilization of purines as secondary nitrogen sources, when primary sources are limiting (343 aa)
 
  0.999
DUR1,2
Urea amidolyase, contains both urea carboxylase and allophanate hydrolase activities, degrades urea to CO2 and NH3; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation; Hydrolysis of urea to ammonia and CO(2) (1835 aa)
     
 
  0.996
DAL7
Malate synthase, role in allantoin degradation unknown; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation; This isozyme is involved in the degradation of allantoin (purine catabolism) (554 aa)
   
 
  0.970
DAL1
Allantoinase, converts allantoin to allantoate in the first step of allantoin degradation; expression sensitive to nitrogen catabolite repression; Utilization of purines as secondary nitrogen sources, when primary sources are limiting (460 aa)
     
   
  0.916
DAL80
Negative regulator of genes in multiple nitrogen degradation pathways; expression is regulated by nitrogen levels and by Gln3p; member of the GATA-binding family, forms homodimers and heterodimers with Deh1p; Negative regulator of multiple nitrogen catabolic genes including the allantoin pathway genes (269 aa)
     
   
  0.873
AGX1
Alanine-glyoxylate aminotransferase (AGT), catalyzes the synthesis of glycine from glyoxylate, which is one of three pathways for glycine biosynthesis in yeast; has similarity to mammalian and plant alanine-glyoxylate aminotransferases; Has alanine-glyoxylate aminotransferase activity (385 aa)
     
 
  0.848
DAL4
Allantoin permease; expression sensitive to nitrogen catabolite repression and induced by allophanate, an intermediate in allantoin degradation; Transport of allantoin (635 aa)
   
   
  0.828
MLS1
Malate synthase, enzyme of the glyoxylate cycle, involved in utilization of non-fermentable carbon sources; expression is subject to carbon catabolite repression; localizes in peroxisomes during growth in oleic acid medium; This isozyme is necessary for growth on acetate as sole C-source (554 aa)
       
  0.811
ICL1
Isocitrate lyase, catalyzes the formation of succinate and glyoxylate from isocitrate, a key reaction of the glyoxylate cycle; expression of ICL1 is induced by growth on ethanol and repressed by growth on glucose; Catalyzes the formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle. Required for growth on ethanol or acetate, but dispensable when fermentable carbon sources are available. Acts also on 2- methylisocitrate (557 aa)
     
 
  0.810
DAL5
Allantoate permease; ureidosuccinate permease; also transports dipeptides, though with lower affinity than for allantoate and ureidosuccinate; expression is constitutive but sensitive to nitrogen catabolite repression; Component of the allantoate transport system (543 aa)
     
   
  0.808
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (13%) [HD]