STRINGSTRING
TAD2 protein (Saccharomyces cerevisiae) - STRING interaction network
"TAD2" - Subunit of tRNA-specific adenosine-34 deaminase, forms a heterodimer with Tad3p that converts adenosine to inosine at the wobble position of several tRNAs in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
TAD2Subunit of tRNA-specific adenosine-34 deaminase, forms a heterodimer with Tad3p that converts adenosine to inosine at the wobble position of several tRNAs; Deaminates adenosine-34 to inosine in many tRNAs (250 aa)    
Predicted Functional Partners:
TAD3
Subunit of tRNA-specific adenosine-34 deaminase, forms a heterodimer with Tad2p that converts adenosine to inosine at the wobble position of several tRNAs; Deaminates adenosine-34 to inosine in many tRNAs (322 aa)
     
  0.998
TAD1
tRNA-specific adenosine deaminase, deaminates adenosine-37 to inosine in tRNA-Ala; Deaminates adenosine-37 to inosine in tRNA-Ala (400 aa)
       
 
  0.928
URK1
Uridine/cytidine kinase, component of the pyrimidine ribonucleotide salvage pathway that converts uridine into UMP and cytidine into CMP; involved in the pyrimidine deoxyribonucleotide salvage pathway, converting deoxycytidine into dCMP; Catalyzes the conversion of uridine into UMP and cytidine into CMP in the pyrimidine salvage pathway (501 aa)
     
  0.869
RIB2
Bifunctional enzyme with DRAP deaminase and tRNA-pseudouridine synthase activity; the deaminase catalyzes the third step in riboflavin biosynthesis and the synthase catalyzes formation of pseudouridine at position 32 in cytoplasmic tRNAs; Responsible for synthesis of pseudouridine from uracil- 32 in cytoplasmic transfer RNAs (591 aa)
   
 
  0.782
GCD14
Subunit of tRNA (1-methyladenosine) methyltransferase, with Gcd10p, required for the modification of the adenine at position 58 in tRNAs, especially tRNAi-Met; first identified as a negative regulator of GCN4 expression; Catalytic subunit of tRNA (adenine-N(1)-)- methyltransferase, which catalyzes the formation of N(1)- methyladenine at position 58 (m1A58) in initiator methionyl-tRNA. GCD14 is also required for repression of GCN4 mRNA translation by the upstream open reading frames (uORFs) under conditions of amino acid sufficiency (383 aa)
     
   
  0.777
FUR1
Uracil phosphoribosyltransferase, synthesizes UMP from uracil; involved in the pyrimidine salvage pathway; Catalyzes the conversion of uracil and 5-phospho-alpha- D-ribose 1-diphosphate (PRPP) to UMP and diphosphate (216 aa)
       
    0.724
GUA1
GMP synthase; highly conserved enzyme that catalyzes the second step in the biosynthesis of GMP from inosine 5’-phosphate (IMP); transcription is not subject to regulation by guanine but is negatively regulated by nutrient starvation; reduction-of-f /.../n mutation gua1-G388D causes changes in cellular guanine nucleotide pools, defects in general protein synthesis, and impaired translation of GCN4 mRNA (525 aa)
   
   
  0.685
GCD10
Subunit of tRNA (1-methyladenosine) methyltransferase with Gcd14p, required for the modification of the adenine at position 58 in tRNAs, especially tRNAi-Met; first identified as a negative regulator of GCN4 expression; Substrate-binding subunit of tRNA (adenine-N(1)-)- methyltransferase, which catalyzes the formation of N(1)- methyladenine at position 58 (m1A58) in initiator methionyl-tRNA. Binds RNA. Also required for repression of GCN4 mRNA translation by the upstream open reading frames (uORFs) under conditions of amino acid sufficiency (478 aa)
     
   
  0.684
NRK1
Nicotinamide riboside kinase, catalyzes the phosphorylation of nicotinamide riboside and nicotinic acid riboside in salvage pathways for NAD+ biosynthesis; Catalyzes the phosphorylation of nicotinamide riboside (NR) and nicotinic acid riboside (NaR) to form nicotinamide mononucleotide (NMN) and nicotinic acid mononucleotide (NaMN) (240 aa)
     
    0.672
DAS2
Putative protein of unknown function; non-essential gene identified in a screen for mutants with increased levels of rDNA transcription; weak similarity with uridine kinases and with phosphoribokinases; Putative uridine kinase identified in a screen for mutants with increased levels of rDNA transcription (232 aa)
     
    0.672
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (7%) [HD]