STRINGSTRING
MRS3 protein (Saccharomyces cerevisiae) - STRING interaction network
"MRS3" - Iron transporter that mediates Fe2+ transport across the inner mitochondrial membrane in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
MRS3Iron transporter that mediates Fe2+ transport across the inner mitochondrial membrane; mitochondrial carrier family member, similar to and functionally redundant with Mrs4p; active under low-iron conditions; may transport other cations; MRS3 suppresses a mitochondrial splice defect in the first intron of the COB gene. It may act as a carrier, exerting its suppressor activity via modulation of solute concentrations in the mitochondrion (possibly of cations) (314 aa)    
Predicted Functional Partners:
YFH1
Mitochondrial matrix iron chaperone; oxidizes and stores iron; interacts with Isu1p to promote Fe-S cluster assembly; mutation results in multiple Fe/S-dependent enzyme deficiencies; human frataxin homolog is mutated in Friedrich’s ataxia; Promotes the biosynthesis of heme as well as the assembly and repair of iron-sulfur clusters by delivering Fe(2+) to proteins involved in these pathways. Plays a role in the protection against iron-catalyzed oxidative stress through its ability to catalyze the oxidation of Fe(2+) to Fe(3+). Can store large amounts of the metal in the form of a ferrih [...] (174 aa)
       
 
  0.952
ATM1
Mitochondrial inner membrane ATP-binding cassette (ABC) transporter, exports mitochondrially synthesized precursors of iron-sulfur (Fe/S) clusters to the cytosol; Performs an essential function in the generation of cytoplasmic iron-sulfur proteins by mediating the ATP-dependent export of Fe/S cluster precursors synthesized by NFS1 and other mitochondrial proteins. Hydrolyzes ATP. Binds glutathione and may function by transporting a glutathione-conjugated iron-sulfur compound (690 aa)
       
 
  0.901
MRS2
Mitochondrial inner membrane Mg(2+) channel, required for maintenance of intramitochondrial Mg(2+) concentrations at the correct level to support splicing of group II introns; High-conductance magnesium-selective channel that mediates the influx of magnesium into the mitochondrial matrix (PubMed-12628916, PubMed-17827224, PubMed-20653776, PubMed-23999289). Essential for the splicing of mRNA group II introns in mitochondria by affecting mitochondrial magnesium concentrations, which are critical for group II intron splicing. It also suppresses a variety of mitochondrial intron mutations [...] (470 aa)
       
 
  0.864
CCC1
Putative vacuolar Fe2+/Mn2+ transporter; suppresses respiratory deficit of yfh1 mutants, which lack the ortholog of mammalian frataxin, by preventing mitochondrial iron accumulation; Has a role in both calcium and manganese homeostasis. Involved in the transfer of iron and Mn(2+) from the cytosol to the vacuole for storage of these metals (322 aa)
     
 
  0.864
RIM2
Mitochondrial pyrimidine nucleotide transporter; imports pyrimidine nucleoside triphosphates and exports pyrimidine nucleoside monophosphates; member of the mitochondrial carrier family (377 aa)
       
 
  0.855
ACO1
Aconitase, required for the tricarboxylic acid (TCA) cycle and also independently required for mitochondrial genome maintenance; phosphorylated; component of the mitochondrial nucleoid; mutation leads to glutamate auxotrophy; Catalyzes the isomerization of citrate to isocitrate via cis-aconitate, a step in the citric acid cycle. Can also provide minor contributions to the reversible dehydration of (R)- homocitrate to cis-homoaconitate, a step in the alpha-aminoadipate pathway for lysine biosynthesis. Plays also an essential role in mtDNA maintenance. May directly protect mtDNA from acc [...] (778 aa)
       
 
  0.769
ISU1
Conserved protein of the mitochondrial matrix, performs a scaffolding function during assembly of iron-sulfur clusters, interacts physically and functionally with yeast frataxin (Yfh1p); isu1 isu2 double mutant is inviable; Scaffold protein for the de novo synthesis of iron- sulfur (Fe-S) clusters within mitochondria, which is required for maturation of both mitochondrial and cytoplasmic [2Fe-2S] and [4Fe-4S] proteins. First, a [2Fe-2S] cluster is transiently assembled on the scaffold proteins ISU1 and ISU2. In a second step, the cluster is released from ISU1/ISU2, transferred to gluta [...] (165 aa)
     
   
  0.768
MMT1
Putative metal transporter involved in mitochondrial iron accumulation; closely related to Mmt2p; Mitochondrial metal transporter involved in mitochondrial iron accumulation (510 aa)
           
  0.697
FRA1
Protein involved in negative regulation of iron regulon transcription; forms an iron independent complex with Fra2p, Grx3p, and Grx4p; cytosolic; mutant fails to repress transcription of iron regulon and is defective in spore formation; Involved in the regulation of the iron regulon in responss to decreased mitochondrial iron-sulfur cluster synthesis (749 aa)
       
 
  0.691
DRE2
Conserved component of an early step in the cytosolic Fe-S protein assembly (CIA) machinery; contains an Fe-S cluster that receives electrons from NADPH via the action of Tah18p; ortholog of human Ciapin1; Component of the cytosolic iron-sulfur (Fe-S) protein assembly (CIA) machinery. Required for the maturation of extramitochondrial Fe-S proteins. Part of an electron transfer chain functioning in an early step of cytosolic Fe-S biogenesis. Electrons are transferred to the Fe-S cluster from NADPH via the FAD- and FMN-containing protein TAH18. Has anti-apoptotic effects in the cell. Inv [...] (348 aa)
       
 
  0.690
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (16%) [HD]