STRINGSTRING
NUC1 protein (Saccharomyces cerevisiae) - STRING interaction network
"NUC1" - Major mitochondrial nuclease, has RNAse and DNA endo- and exonucleolytic activities in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
NUC1Major mitochondrial nuclease, has RNAse and DNA endo- and exonucleolytic activities; has roles in mitochondrial recombination, apoptosis and maintenance of polyploidy; This enzyme has both RNase and DNase activity (329 aa)    
Predicted Functional Partners:
AIF1
Mitochondrial cell death effector; translocates to the nucleus in response to apoptotic stimuli, homolog of mammalian Apoptosis-Inducing Factor, putative reductase; Putative FAD-dependent oxidoreductase involved in the resistance to cercosporin and other singlet oxygen-generating photosensitizers. Translocates from mitochondria to the nucleus under apoptotic conditions, where it degrades DNA and induces apoptosis (378 aa)
     
 
  0.949
SLX1
Subunit of a complex, with Slx4p, that hydrolyzes 5’ branches from duplex DNA in response to stalled or converging replication forks; function overlaps with that of Sgs1p-Top3p; Catalytic subunit of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for simple Y, 5’-flap and replication fork-like structures. It cleaves the strand bearing the 5’-non-homolog [...] (304 aa)
           
  0.923
IRE1
Serine-threonine kinase and endoribonuclease; transmembrane protein that mediates the unfolded protein response (UPR) by regulating Hac1p synthesis through HAC1 mRNA splicing; Kar2p binds inactive Ire1p and releases from it upon ER stress; Senses unfolded proteins in the lumen of the endoplasmic reticulum via its N-terminal domain which leads to enzyme auto- activation. The active endoribonuclease domain splices HAC1 precursor mRNA to produce the mature form which then induces transcription of UPR target genes (1115 aa)
           
  0.906
TRZ1
tRNA 3’-end processing endonuclease tRNase Z; also localized to mitochondria and interacts genetically with Rex2 exonuclease; homolog of the human candidate prostate cancer susceptibility gene ELAC2; Zinc phosphodiesterase, which displays some tRNA 3’- processing endonuclease activity. Probably involved in tRNA maturation, by removing a 3’-trailer from precursor tRNA (838 aa)
     
 
  0.904
ACT1
Actin, structural protein involved in cell polarization, endocytosis, and other cytoskeletal functions; Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells (375 aa)
     
   
  0.895
RAD27
5’ to 3’ exonuclease, 5’ flap endonuclease, required for Okazaki fragment processing and maturation as well as for long-patch base-excision repair; member of the S. pombe RAD2/FEN1 family; Structure-specific nuclease with 5’-flap endonuclease and 5’-3’ exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5’-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5’-end of a downstream Okazaki fragment. It enters the flap from the 5’-end and then tracks to cleave the flap base, leaving a nick [...] (382 aa)
     
 
  0.888
YMR099C
Glucose-6-phosphate 1-epimerase (hexose-6-phosphate mutarotase), likely involved in carbohydrate metabolism; GFP-fusion protein localizes to both the nucleus and cytoplasm and is induced in response to the DNA-damaging agent MMS; Catalyzes the interconversion between the alpha and beta anomers from at least three hexose 6-phosphate sugars (Glc6P, Gal6P, and Man6P) (297 aa)
       
      0.868
DHR2
Predominantly nucleolar DEAH-box ATP-dependent RNA helicase, required for 18S rRNA synthesis; Probable ATP-binding RNA helicase. Required for 18S rRNA synthesis (735 aa)
     
   
  0.813
TDH2
Glyceraldehyde-3-phosphate dehydrogenase, isozyme 2, involved in glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the cytoplasm and cell wall (332 aa)
           
  0.781
TDH1
Glyceraldehyde-3-phosphate dehydrogenase, isozyme 1, involved in glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the cytoplasm and cell wall (332 aa)
           
  0.777
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (7%) [HD]