ESS1 protein (Saccharomyces cerevisiae) - STRING interaction network
"ESS1" - Peptidylprolyl-cis/trans-isomerase in Saccharomyces cerevisiae
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
ESS1Peptidylprolyl-cis/trans-isomerase (PPIase) specific for phosphorylated serine and threonine residues N-terminal to proline; regulates phosphorylation of the RNA polymerase II large subunit (Rpo21p) C-terminal domain; Essential PPIase specific for phosphoserine and phosphothreonine N-terminal to the proline residue. Required for efficient pre-mRNA 3’-end processing and transcription termination, probably by inducing conformational changes by proline-directed isomerization in the C-terminal domain (CTD) of RPB1, thereby altering cofactor binding with the RNA polymerase II transcription [...] (170 aa)    
Predicted Functional Partners:
Cytoplasmic peptidyl-prolyl cis-trans isomerase (cyclophilin), catalyzes the cis-trans isomerization of peptide bonds N-terminal to proline residues; binds the drug cyclosporin A; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides. Involved in histone deacetylase complexes, suggesting a function in chromatin. Imports fructose-1,6- bisphosphatase (FBPase) into the intermediate vacuole import and degradation (Vid) vesicles. Regulates the meiotic gene program via the Set3C histone deacetylase complex to pro [...] (162 aa)
Peptidyl-prolyl cis-trans isomerase (PPIase), binds to the drugs FK506 and rapamycin; also binds to the nonhistone chromatin binding protein Hmo1p and may regulate its assembly or function; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (114 aa)
Sorting nexin required to maintain late-Golgi resident enzymes in their proper location by recycling molecules from the prevacuolar compartment; contains a PX domain and sequence similarity to human Snx3p; Required for retention of late Golgi membrane proteins. Component of the retrieval machinery that functions by direct interaction with the cytosolic tails of certain TGN membrane proteins during the sorting/budding process at the prevacuolar compartment. Binds phosphatidylinositol 3-phosphate (PtdIns(P3)) (162 aa)
Carboxy-terminal domain (CTD) phosphatase, essential for dephosphorylation of the repeated C-terminal domain of the RNA polymerase II large subunit (Rpo21p); Processively dephosphorylates ’Ser-2’ and ’Ser-5’ of the heptad repeats YSPTSPS in the C-terminal domain of the largest RNA polymerase II subunit (RPB1). This promotes the activity of RNA polymerase II (732 aa)
Negative regulator of transcription elongation, contains a TFIIS-like domain and a PHD finger, multicopy suppressor of temperature-sensitive ess1 mutations, probably binds RNA polymerase II large subunit; Negative regulator of transcription elongation (594 aa)
RNA polymerase II largest subunit B220, part of central core; phosphorylation of C-terminal heptapeptide repeat domain regulates association with transcription and splicing factors; similar to bacterial beta-prime; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal [...] (1733 aa)
Transcription/RNA-processing factor that associates with TFIIB and cleavage/polyadenylation factor Pta1p; exhibits phosphatase activity on serine-5 of the RNA polymerase II C-terminal domain; affects start site selection in vivo; Component of the cleavage and polyadenylation factor (CPF) complex, which plays a key role in polyadenylation-dependent pre-mRNA 3’-end formation and cooperates with cleavage factors including the CFIA complex and NAB4/CFIB. Component of the APT complex, which may be involved in polyadenylation-independent transcript 3’-end formation. SSU72 is required for 3’- [...] (206 aa)
E3 ubiquitin ligase of the NEDD4 family; involved in regulating many cellular processes including MVB sorting, heat shock response, transcription, endocytosis, and ribosome stability; human homolog is involved in Liddle syndrome; mutant tolerates an /.../dy; ubiquitylates Sec23p; E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Component of a RSP5 ubiquitin ligase complex which specifies polyubiquitination and intracellular trafficking of the general a [...] (809 aa)
Catalytic (alpha) subunit of C-terminal domain kinase I (CTDK-I); phosphorylates both RNA pol II subunit Rpo21p to affect transcription and pre-mRNA 3’ end processing, and ribosomal protein Rps2p to increase translational fidelity; similar to the Dr /.../la dCDK12 and human CDK12 and probably CDK13; Catalytic subunit of the CTDK-I complex, which hyperphosphorylates the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit. CTDK-I phosphorylates ’Ser-5’ if the CTD substrate is not phosphorylated at ’Ser-5’, but will phosphorylate ’Ser-2’ of a CTD substrate [...] (528 aa)
Essential component of the Sorting and Assembly Machinery (SAM or TOB complex) of the mitochondrial outer membrane, which binds precursors of beta-barrel proteins and facilitates their outer membrane insertion; homologous to bacterial Omp85; Component of the mitochondrial outer membrane sorting assembly machinery (SAM or TOB) complex, which is required for the sorting of proteins with complicated topology, such as beta-barrel proteins, to the mitochondrial outer membrane after import by the TOM complex (484 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (4%) [HD]