STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
TES1Peroxisomal acyl-CoA thioesterase; likely to be involved in fatty acid oxidation rather than fatty acid synthesis; conserved protein also found in human peroxisomes; TES1 mRNA levels increase during growth on fatty acids; Belongs to the C/M/P thioester hydrolase family (349 aa)    
Predicted Functional Partners:
Fatty-acyl coenzyme A oxidase; involved in the fatty acid beta-oxidation pathway; localized to the peroxisomal matrix
Peroxisomal hydratase-dehydrogenase-epimerase; 3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase; multifunctional enzyme of the peroxisomal fatty acid beta-oxidation pathway; mutation is functionally complemented by human HSD17B4
Peroxisomal delta3,delta2-enoyl-CoA isomerase; hexameric protein that converts 3-hexenoyl-CoA to trans-2-hexenoyl-CoA, essential for the beta-oxidation of unsaturated fatty acids, oleate-induced; ECI1 has a paralog, DCI1, that arose from the whole genome duplication
Peroxisomal 2,4-dienoyl-CoA reductase; auxiliary enzyme of fatty acid beta-oxidation; homodimeric enzyme required for growth and sporulation on petroselineate medium; expression induced during late sporulation and in the presence of oleate; Belongs to the short-chain dehydrogenases/reductases (SDR) family
Carnitine O-acetyltransferase, mitochondrial; Carnitine acetyl-CoA transferase; present in both mitochondria and peroxisomes; transfers activated acetyl groups to carnitine to form acetylcarnitine which can be shuttled across membranes
Very long chain fatty acyl-CoA synthetase and fatty acid transporter; activates imported fatty acids with a preference for very long lengths (C20-C26); has a separate function in the transport of long chain fatty acids
Peroxisomal coenzyme A diphosphatase 1, peroxisomal; 8-oxo-dGTP diphosphatase; prevents spontaneous mutagenesis via sanitization of oxidized purine nucleoside triphosphates; can also act as peroxisomal pyrophosphatase with specificity for coenzyme A and CoA derivatives, may function to remove potentially toxic oxidized CoA disulfide from peroxisomes to maintain the capacity for beta-oxidation of fatty acids; nudix hydrolase family member; similar E. coli MutT and human, rat and mouse MTH1
Putative 2-hydroxyacyl-CoA lyase; Peroxisomal matrix protein; well-conserved in fungi; contains tripartite homology domain of thiamine pyrophosphate (TPP) enzymes; targeted to peroxisomes by Pex5p; contains low sequence identity with Pdc1p; mRNA identified as translated by ribosome profiling data
Cytosolic catalase T; has a role in protection from oxidative damage by hydrogen peroxide
Cytosolic NADP-specific isocitrate dehydrogenase; catalyzes oxidation of isocitrate to alpha-ketoglutarate; levels are elevated during growth on non-fermentable carbon sources and reduced during growth on glucose; IDP2 has a paralog, IDP3, that arose from the whole genome duplication
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (10%) [HD]