STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ADO1Adenosine kinase; required for the utilization of S-adenosylmethionine (AdoMet); may be involved in recycling adenosine produced through the methyl cycle. (340 aa)    
Predicted Functional Partners:
AAH1
Adenine deaminase (adenine aminohydrolase); converts adenine to hypoxanthine; involved in purine salvage; transcriptionally regulated by nutrient levels and growth phase; Aah1p degraded upon entry into quiescence via SCF and the proteasome.
   
 0.996
APT1
Adenine phosphoribosyltransferase; catalyzes the formation of AMP from adenine and 5-phosphoribosylpyrophosphate; involved in the salvage pathway of purine nucleotide biosynthesis; APT1 has a paralog, APT2, that arose from the whole genome duplication.
  
 0.995
ADK1
Adenylate kinase, required for purine metabolism; localized to the cytoplasm and the mitochondria; lacks cleavable signal sequence; protein abundance increases in response to DNA replication stress; mutations affecting Adk1p catalytic activity deregulate expression of phosphate utilization genes PHO5 and PHO84; human homolog AK1 can complement yeast adk1 mutant.
  
 0.993
APT2
Potential adenine phosphoribosyltransferase; encodes a protein with similarity to adenine phosphoribosyltransferase, but artificially expressed protein exhibits no enzymatic activity; APT2 has a paralog, APT1, that arose from the whole genome duplication.
  
 0.989
ADE13
Adenylosuccinate lyase; catalyzes two steps in the 'de novo' purine nucleotide biosynthetic pathway; expression is repressed by adenine and activated by Bas1p and Pho2p; mutations in human ortholog ADSL cause adenylosuccinase deficiency; human ADSL can complement yeast ADE13 null mutant.
  
 0.988
PNP1
Purine nucleoside phosphorylase; specifically metabolizes inosine and guanosine nucleosides; involved in the nicotinamide riboside salvage pathway; Belongs to the PNP/MTAP phosphorylase family.
  
 
 0.979
AMD1
AMP deaminase; tetrameric enzyme that catalyzes the deamination of AMP to form IMP and ammonia; thought to be involved in regulation of intracellular purine (adenine, guanine, and inosine) nucleotide pools.
     
 0.974
PDE2
3',5'-cyclic-nucleotide phosphodiesterase 2; High-affinity cyclic AMP phosphodiesterase; component of the cAMP-dependent protein kinase signaling system, protects the cell from extracellular cAMP, contains readthrough motif surrounding termination codon.
     
 0.947
ADK2
GTP:AMP phosphotransferase, mitochondrial; Mitochondrial adenylate kinase; catalyzes the reversible synthesis of GTP and AMP from GDP and ADP; may serve as a back-up for synthesizing GTP or ADP depending on metabolic conditions; 3' sequence of ADK2 varies with strain background.
  
 0.942
FAP7
Adenylate kinase isoenzyme 6 homolog FAP7; Essential NTPase required for small ribosome subunit synthesis; mediates processing of the 20S pre-rRNA at site D in the cytoplasm but associates only transiently with 43S preribosomes via Rps14p; complex with Rps14 is conserved between humans, yeast, and arches; may be the endonuclease for site D; depletion leads to accumulation of pre-40S ribosomes in 80S-like ribosomes; human TAF9 functionally complements the lethality of the null mutation.
  
 
 0.912
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (28%) [HD]