STRINGSTRING
ADO1 protein (Saccharomyces cerevisiae) - STRING interaction network
"ADO1" - Adenosine kinase, required for the utilization of S-adenosylmethionine in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ADO1Adenosine kinase, required for the utilization of S-adenosylmethionine (AdoMet); may be involved in recycling adenosine produced through the methyl cycle; ATP dependent phosphorylation of adenosine and other related nucleoside analogs to monophosphate derivatives. ADO1 does not play a major role in adenine utilization in yeast. Its physiological role could primarily be to recycle adenosine produced by the methyl cycle (340 aa)    
Predicted Functional Partners:
AAH1
Adenine deaminase (adenine aminohydrolase), converts adenine to hypoxanthine; involved in purine salvage; transcriptionally regulated by nutrient levels and growth phase; Aah1p degraded upon entry into quiescence via SCF and the proteasome; Catalyzes the hydrolytic deamination of adenine to hypoxanthine. Plays an important role in the purine salvage pathway and in nitrogen catabolism. Also exhibits a low activity towards N(6)-substituted adenines that are commonly known as the plant hormones cytokinins (347 aa)
       
  0.996
ADE13
Adenylosuccinate lyase, catalyzes two steps in the ’de novo’ purine nucleotide biosynthetic pathway; expression is repressed by adenine and activated by Bas1p and Pho2p; mutations in human ortholog ADSL cause adenylosuccinase deficiency (482 aa)
   
  0.993
AMD1
AMP deaminase, tetrameric enzyme that catalyzes the deamination of AMP to form IMP and ammonia; may be involved in regulation of intracellular adenine nucleotide pools; AMP deaminase plays a critical role in energy metabolism (810 aa)
     
 
  0.988
ADK1
Adenylate kinase, required for purine metabolism; localized to the cytoplasm and the mitochondria; lacks cleavable signal sequence; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism. Adenylate kinase activity is critical for regulation of the phosphate utilization and the AMP de novo biosynthesis pathways (222 aa)
   
 
  0.980
PNP1
Purine nucleoside phosphorylase, specifically metabolizes inosine and guanosine nucleosides; involved in the nicotinamide riboside salvage pathway; The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta- (deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate. Cleaves guanosine and inosine (By similarity) (311 aa)
       
  0.980
ADK2
Mitochondrial adenylate kinase, catalyzes the reversible synthesis of GTP and AMP from GDP and ADP; may serve as a back-up for synthesizing GTP or ADP depending on metabolic conditions; 3’ sequence of ADK2 varies with strain background; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism. Adenylate kinase activity is critical for regulation of the phosphate utilization and the AMP de novo biosynthesis pathways (225 aa)
   
 
  0.976
APT2
Apparent pseudogene, not transcribed or translated under normal conditions; encodes a protein with similarity to adenine phosphoribosyltransferase, but artificially expressed protein exhibits no enzymatic activity; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. May lack catalytic activity (181 aa)
       
  0.958
APT1
Adenine phosphoribosyltransferase, catalyzes the formation of AMP from adenine and 5-phosphoribosylpyrophosphate; involved in the salvage pathway of purine nucleotide biosynthesis; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis (187 aa)
     
  0.957
ADE12
Adenylosuccinate synthase, catalyzes the first step in synthesis of adenosine monophosphate from inosine 5’monophosphate during purine nucleotide biosynthesis; exhibits binding to single-stranded autonomously replicating (ARS) core sequence; Plays an important role in the de novo pathway and in the salvage pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP (433 aa)
     
 
  0.925
YND1
Apyrase with wide substrate specificity, helps prevent inhibition of glycosylation by hydrolyzing nucleoside tri- and diphosphates that inhibit glycotransferases; partially redundant with Gda1p; mediates adenovirus E4orf4-induced toxicity; Catalyzes the hydrolysis of phosphoanhydride bonds of nucleoside tri- and di-phosphates. Has equal high activity toward ADP/ATP, GDP/GTP, and UDP/UTP and approximately 50% less toward CDP/CTP and thiamine pyrophosphate. Has no activity toward GMP. Required for Golgi glycosylation and cell wall integrity. Together with CDC55, required for adenovirus E [...] (630 aa)
         
  0.914
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (6%) [HD]