STRINGSTRING
MET5 protein (Saccharomyces cerevisiae) - STRING interaction network
"MET5" - Sulfite reductase beta subunit, involved in amino acid biosynthesis, transcription repressed by methionine in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
MET5Sulfite reductase beta subunit, involved in amino acid biosynthesis, transcription repressed by methionine; Catalyzes the reduction of sulfite to sulfide, one of several activities required for the biosynthesis of L-cysteine from sulfate (1442 aa)    
Predicted Functional Partners:
MET10
Subunit alpha of assimilatory sulfite reductase, which converts sulfite into sulfide; This enzyme catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate (1035 aa)
   
  0.999
MET16
3’-phosphoadenylsulfate reductase, reduces 3’-phosphoadenylyl sulfate to adenosine-3’,5’-bisphosphate and free sulfite using reduced thioredoxin as cosubstrate, involved in sulfate assimilation and methionine metabolism; The NADP dependent reduction of PAPS into sulfite involves thioredoxin which probably plays the role of a thiol carrier (261 aa)
 
 
  0.999
MET3
ATP sulfurylase, catalyzes the primary step of intracellular sulfate activation, essential for assimilatory reduction of sulfate to sulfide, involved in methionine metabolism; Catalyzes the first intracellular reaction of sulfate assimilation, forming adenosine-5’-phosphosulfate (APS) from inorganic sulfate and ATP. Plays an important role in sulfate activation as a component of the biosynthesis pathway of sulfur- containing amino acids (511 aa)
   
 
  0.999
MET14
Adenylylsulfate kinase, required for sulfate assimilation and involved in methionine metabolism; Catalyzes the synthesis of activated sulfate (202 aa)
   
 
  0.998
NCP1
NADP-cytochrome P450 reductase; involved in ergosterol biosynthesis; associated and coordinately regulated with Erg11p; This enzyme is required for electron transfer from NADP to cytochrome P450 in microsomes. It can also provide electron transfer to heme oxygenase and cytochrome B5. Involved in ergosterol biosynthesis. Has NADPH-dependent ferrireductase activity on the plasma membrane (691 aa)
 
  0.997
TAH18
Conserved NAPDH-dependent diflavin reductase, component of an early step in the cytosolic Fe-S protein assembly (CIA) machinery; transfers electrons from NADPH to the Fe-S cluster of Dre2p; plays a pro-death role under oxidative stress; Component of the cytosolic iron-sulfur (Fe-S) protein assembly (CIA) machinery. Required for the maturation of extramitochondrial Fe-S proteins. Part of an electron transfer chain functioning in an early step of cytosolic Fe-S biogenesis. Transfers electrons from NADPH to the Fe-S cluster of DRE2. Positively controls H(2)O(2)-induced cell death (623 aa)
 
  0.996
MCY1
Putative cysteine synthase, localized to the mitochondrial outer membrane (393 aa)
   
 
  0.995
STR2
Cystathionine gamma-synthase, converts cysteine into cystathionine; Catalyzes the formation of L-cystathionine from O- succinyl-L-homoserine (OSHS) and L-cysteine, via a gamma- replacement reaction. In the absence of thiol, catalyzes gamma- elimination to form 2-oxobutanoate, succinate and ammonia (By similarity) (639 aa)
   
 
  0.990
MET17
O-acetyl homoserine-O-acetyl serine sulfhydrylase; required for Methionine and cysteine biosynthesis; Transforms O-acetylhomoserine into homocysteine and O- acetylserine into cysteine (444 aa)
   
 
  0.989
YLL058W
Putative protein of unknown function with similarity to Str2p, which is a cystathionine gamma-synthase important in sulfur metabolism; YLL058W is not an essential gene; Catalyzes the formation of L-cystathionine from O- succinyl-L-homoserine (OSHS) and L-cysteine, via a gamma- replacement reaction. In the absence of thiol, catalyzes gamma- elimination to form 2-oxobutanoate, succinate and ammonia (By similarity) (575 aa)
   
 
  0.987
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (7%) [HD]