STRINGSTRING
AUR1 protein (Saccharomyces cerevisiae) - STRING interaction network
"AUR1" - Phosphatidylinositol:ceramide phosphoinositol transferase (IPC synthase), required for sphingolipid synthesis in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AUR1Phosphatidylinositol-ceramide phosphoinositol transferase (IPC synthase), required for sphingolipid synthesis; can mutate to confer aureobasidin A resistance; Catalytic component of the inositol phosphorylceramide synthase which catalyzes the addition of a phosphorylinositol group onto ceramide to form inositol phosphorylceramide, an essential step in sphingolipid biosynthesis (401 aa)    
Predicted Functional Partners:
SUR1
Probable catalytic subunit of a mannosylinositol phosphorylceramide (MIPC) synthase, forms a complex with probable regulatory subunit Csg2p; function in sphingolipid biosynthesis is overlapping with that of Csh1p; Involved in the synthesis of mannosyl phosphorylinositol ceramide. Catalyzes the addition of mannosyl to phosphorylinositol ceramide. Suppressor of RVS161 mutation (382 aa)
     
  0.994
SCS7
Sphingolipid alpha-hydroxylase, functions in the alpha-hydroxylation of sphingolipid-associated very long chain fatty acids, has both cytochrome b5-like and hydroxylase/desaturase domains, not essential for growth; Ceramide hydroxylase involved in the alpha-hydroxylation of sphingolipid-associated very long chain fatty acids. Hydroxylates the very long chain fatty acid of ceramides at C2 and C3 (384 aa)
     
  0.990
CSG2
Endoplasmic reticulum membrane protein, required for mannosylation of inositolphosphorylceramide and for growth at high calcium concentrations; Required for calcium regulation. May regulate calcium accumulation by a non-vacuole organelle. Also regulates the activity of CSH1 and SUR1 during mannosyl phosphorylinositol ceramide synthesis (410 aa)
       
  0.982
KEI1
Component of inositol phosphorylceramide (IPC) synthase; forms a complex with Aur1p and regulates its activity; required for IPC synthase complex localization to the Golgi; post-translationally processed by Kex2p; KEI1 is an essential gene; Regulatory component of the inositol phosphorylceramide (ICP) synthase which catalyzes the addition of a phosphorylinositol group onto ceramide to form inositol phosphorylceramide, an essential step in sphingolipid biosynthesis. Helps the medial Golgi localization of IPC synthase in a COPI vesicle-dependent manner (221 aa)
       
  0.963
SUR2
Sphinganine C4-hydroxylase, catalyses the conversion of sphinganine to phytosphingosine in sphingolipid biosyntheis; Required for hydroxylation of C-4 in the sphingoid moiety of ceramide. Involved in the response to syringomycin (349 aa)
     
 
  0.889
DOS2
Protein of unknown function, green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm; Acts in ubiquitin metabolism and is necessary for the control of single-copy DNA replication (310 aa)
       
      0.868
ELO3
Elongase, involved in fatty acid and sphingolipid biosynthesis; synthesizes very long chain 20-26-carbon fatty acids from C18-CoA primers; involved in regulation of sphingolipid biosynthesis; Component of a microsomal membrane bound long-chain fatty acid elongation system, which produces the 20-26-carbon very long-chain fatty acids (VLCFA) from long-chain fatty acid precursors and is involved ceramide and inositol sphingolipid biosynthesis. Component of elongase III, which synthesizes 20-26- carbon fatty acids from 18-carbon-fatty acyl-CoA primers such as stearoyl-CoA by incorporation [...] (345 aa)
     
 
  0.845
ORM1
Evolutionarily conserved protein, similar to Orm2p, required for resistance to agents that induce unfolded protein response; Orm1p and Orm2p together control membrane biogenesis by coordinating lipid homeostasis with protein quality control; Component of the SPOTS complex that acts as a negative regulator of sphingolipid synthesis. Acts by inhibiting serine palmitoyltransferases (LCB1 and LCB2) activity (222 aa)
       
 
  0.806
YMR010W
Putative protein of unknown function; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm; YMR010W is not an essential gene; YMR010W mRNA is transcribed with ADI1 (405 aa)
       
      0.806
ORM2
Evolutionarily conserved protein, similar to Orm1p, required for resistance to agents that induce unfolded protein response; Orm1p and Orm2p together control membrane biogenesis by coordinating lipid homeostasis with protein quality control; Component of the SPOTS complex that acts as a negative regulator of sphingolipid synthesis. Acts by inhibiting serine palmitoyltransferases (LCB1 and LCB2) activity (216 aa)
       
 
  0.766
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (9%) [HD]