STRINGSTRING
YNK1 protein (Saccharomyces cerevisiae) - STRING interaction network
"YNK1" - Nucleoside diphosphate kinase, catalyzes the transfer of gamma phosphates from nucleoside triphosphates, usually ATP, to nucleoside diphosphates by a mechanism that involves formation of an autophosphorylated enzyme intermediate in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
YNK1Nucleoside diphosphate kinase, catalyzes the transfer of gamma phosphates from nucleoside triphosphates, usually ATP, to nucleoside diphosphates by a mechanism that involves formation of an autophosphorylated enzyme intermediate; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate. Required for repair of UV radiation- and etoposide-induced DNA damage (153 aa)    
Predicted Functional Partners:
ADK1
Adenylate kinase, required for purine metabolism; localized to the cytoplasm and the mitochondria; lacks cleavable signal sequence; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism. Adenylate kinase activity is critical for regulation of the phosphate utilization and the AMP de novo biosynthesis pathways (222 aa)
   
  0.986
ADK2
Mitochondrial adenylate kinase, catalyzes the reversible synthesis of GTP and AMP from GDP and ADP; may serve as a back-up for synthesizing GTP or ADP depending on metabolic conditions; 3’ sequence of ADK2 varies with strain background; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism. Adenylate kinase activity is critical for regulation of the phosphate utilization and the AMP de novo biosynthesis pathways (225 aa)
   
  0.986
URA6
Uridylate kinase, catalyzes the seventh enzymatic step in the de novo biosynthesis of pyrimidines, converting uridine monophosphate (UMP) into uridine-5’-diphosphate (UDP); Catalyzes the phosphorylation of pyrimidine nucleoside monophosphates at the expense of ATP. Plays an important role in de novo pyrimidine nucleotide biosynthesis. Has preference for UMP and dUMP as phosphate acceptors, but can also use CMP, dCMP, AMP, GMP, dGMP and dTMP. ATP and dATP are the best phosphate donors, but can also use GTP, dGTP, dCTP, and dTTP to some degree (204 aa)
   
  0.978
RPA135
RNA polymerase I second largest subunit A135; DNA-dependent RNA polymerases catalyze the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I (Pol I) which synthesizes ribosomal RNA precursors. Besides, RNA polymerase I has intrinsic RNA cleavage activity. RPA190 and RPA135 both contribute to the polymerase catalytic activity and together form the Pol I active center. In addition, subunit RPA12 contributes a catalytic zinc ribbon that is required for RNA cleavage by Pol I. A single stranded DNA template strand of the pro [...] (1203 aa)
     
  0.978
CDC8
Thymidylate and uridylate kinase, functions in de novo biosynthesis of pyrimidine deoxyribonucleotides; converts dTMP to dTDP and dUMP to dUTP; essential for mitotic and meiotic DNA replication; homologous to S. pombe Tmp1p; Catalyzes the conversion of dTMP to dTDP (216 aa)
     
 
  0.976
GUK1
Guanylate kinase, converts GMP to GDP; required for growth and mannose outer chain elongation of cell wall N-linked glycoproteins; Essential for recycling GMP and indirectly, cGMP (187 aa)
     
  0.976
URA7
Major CTP synthase isozyme (see also URA8), catalyzes the ATP-dependent transfer of the amide nitrogen from glutamine to UTP, forming CTP, the final step in de novo biosynthesis of pyrimidines; involved in phospholipid biosynthesis; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen (579 aa)
       
  0.971
URA8
Minor CTP synthase isozyme (see also URA7), catalyzes the ATP-dependent transfer of the amide nitrogen from glutamine to UTP, forming CTP, the final step in de novo biosynthesis of pyrimidines; involved in phospholipid biosynthesis; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Plays an important role in the regulation of phospholipid synthesis (578 aa)
       
  0.970
HAM1
Conserved protein with deoxyribonucleoside triphosphate pyrophosphohydrolase activity, mediates exclusion of noncanonical purines from deoxyribonucleoside triphosphate pools; mutant is sensitive to the base analog 6-N-hydroxylaminopurine; Pyrophosphatase that hydrolyzes the non-canonical purine nucleotides inosine triphosphate (ITP), deoxyinosine triphosphate (dITP) as well as 2’-deoxy-N-6-hydroxylaminopurine triposphate (dHAPTP) and 5-bromodeoxyuridine 5’-triphosphate (BrdUTP) to their respective monophosphate derivatives. Xanthosine 5’-triphosphate (XTP) is also a potential substrate [...] (197 aa)
   
  0.970
DUT1
Deoxyuridine triphosphate diphosphatase (dUTPase); catalyzes hydrolysis of dUTP to dUMP and PPi, thereby preventing incorporation of uracil into DNA during replication; critical for the maintenance of genetic stability; also has diphosphatase activi /.../deoxyinosine triphosphate; This enzyme is involved in nucleotide metabolism- it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA (147 aa)
   
 
  0.965
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (9%) [HD]