STRINGSTRING
HAP4 protein (Saccharomyces cerevisiae) - STRING interaction network
"HAP4" - Subunit of the heme-activated, glucose-repressed Hap2p/3p/4p/5p CCAAT-binding complex, a transcriptional activator and global regulator of respiratory gene expression in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
HAP4Subunit of the heme-activated, glucose-repressed Hap2p/3p/4p/5p CCAAT-binding complex, a transcriptional activator and global regulator of respiratory gene expression; provides the principal activation function of the complex; Acts a component of the CCAT-binding factor, which is a transcriptional activator and binds to the upstream activation site (UAS2) of the CYC1 gene and other genes involved in mitochondrial electron transport and activates their expression. Recognizes the sequence 5’-CCAAT-3’. HAP4 encodes a regulatory subunit of the DNA-bound complex and seems to provide the pri [...] (554 aa)    
Predicted Functional Partners:
HAP5
Subunit of the heme-activated, glucose-repressed Hap2/3/4/5 CCAAT-binding complex, a transcriptional activator and global regulator of respiratory gene expression; required for assembly and DNA binding activity of the complex; Acts a component of the CCAT-binding factor, which is a transcriptional activator and binds to the upstream activation site (UAS2) of the CYC1 gene and other genes involved in mitochondrial electron transport and activates their expression. Recognizes the sequence 5’-CCAAT-3’. HAP5 is essential for DNA- binding activity. It may be the linchpin that binds to the s [...] (242 aa)
       
  0.989
HAP2
Subunit of the heme-activated, glucose-repressed Hap2p/3p/4p/5p CCAAT-binding complex, a transcriptional activator and global regulator of respiratory gene expression; contains sequences sufficient for both complex assembly and DNA binding; Acts a component of the CCAT-binding factor, which is a transcriptional activator and binds to the upstream activation site (UAS2) of the CYC1 gene and other genes involved in mitochondrial electron transport and activates their expression. Recognizes the sequence 5’-CCAAT-3’. HAP2 has primarily a structural role in the HAP complexes I and II (265 aa)
       
  0.979
HAP3
Subunit of the heme-activated, glucose-repressed Hap2p/3p/4p/5p CCAAT-binding complex, a transcriptional activator and global regulator of respiratory gene expression; contains sequences contributing to both complex assembly and DNA binding; Acts a component of the CCAT-binding factor, which is a transcriptional activator and binds to the upstream activation site (UAS2) of the CYC1 gene and other genes involved in mitochondrial electron transport and activates their expression. Recognizes the sequence 5’-CCAAT-3’ (144 aa)
       
  0.966
LPD1
Dihydrolipoamide dehydrogenase, the lipoamide dehydrogenase component (E3) of the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multi-enzyme complexes; Lipoamide dehydrogenase is a component of the alpha- ketoacid dehydrogenase complexes. This includes the pyruvate dehydrogenase complex, which catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). Acts also as component of the glycine cleavage system (glycine decarboxylase complex), which catalyzes the degradation of glycine (499 aa)
           
  0.864
DLD1
D-lactate dehydrogenase, oxidizes D-lactate to pyruvate, transcription is heme-dependent, repressed by glucose, and derepressed in ethanol or lactate; located in the mitochondrial inner membrane; Catalyzes the stereospecific oxidation of D-lactate to pyruvate (587 aa)
           
  0.823
GCN4
bZIP transcriptional activator of amino acid biosynthetic genes; activator responds to amino acid starvation; expression is tightly regulated at both the transcriptional and translational levels; Is a transcription factor that is responsible for the activation of more than 30 genes required for amino acid or for purine biosynthesis in response to amino acid or purine starvation. Binds and recognize the DNA sequence- 5’-TGA[CG]TCA- 3’ (281 aa)
       
 
  0.790
GCV2
P subunit of the mitochondrial glycine decarboxylase complex, required for the catabolism of glycine to 5,10-methylene-THF; expression is regulated by levels of 5,10-methylene-THF in the cytoplasm; The glycine cleavage system (glycine decarboxylase complex) catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein (1034 aa)
           
  0.721
SNF2
Catalytic subunit of the SWI/SNF chromatin remodeling complex involved in transcriptional regulation; contains DNA-stimulated ATPase activity; functions interdependently in transcriptional activation with Snf5p and Snf6p; Involved in transcriptional activation. Catalytic component of the SWI/SNF complex, an ATP-dependent chromatin- remodeling complex, which is required for the positive and negative regulation of gene expression of a large number of genes. It changes chromatin structure by altering DNA-histone contacts within a nucleosome, leading eventually to a change in nucleosome po [...] (1703 aa)
       
 
  0.714
MIG1
Transcription factor involved in glucose repression; sequence specific DNA binding protein containing two Cys2His2 zinc finger motifs; regulated by the SNF1 kinase and the GLC7 phosphatase; Involved in glucose repression of the SUC, GAL and MAL genes as well as of the CAT8 gene. Binds to two sites in the upstream region of SUC2 (504 aa)
           
  0.680
SHY1
Mitochondrial inner membrane protein required for assembly of cytochrome c oxidase (complex IV); associates with complex IV assembly intermediates and complex III/complex IV supercomplexes; similar to human SURF1 involved in Leigh Syndrome; Required for efficient assembly of cytochrome c oxidase in the mitochondrial inner membrane. Involved in a step that couples MSS51-COX14-dependent regulation of COX1 translation to early steps of cytochrome c oxidase assembly (389 aa)
       
 
  0.667
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (8%) [HD]