STRINGSTRING
ABF1 protein (Saccharomyces cerevisiae) - STRING interaction network
"ABF1" - DNA binding protein with possible chromatin-reorganizing activity involved in transcriptional activation, gene silencing, and DNA replication and repair in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ABF1DNA binding protein with possible chromatin-reorganizing activity involved in transcriptional activation, gene silencing, and DNA replication and repair; General regulatory factor (GRF) that contributes to transcriptional activation of a large number of genes, as well as to DNA replication, silencing and telomere structure. Involved in the transcription activation of a subset of ribosomal protein genes. Binds the ARS-elements found in many promoters. Binds to the sequence 5’-TCN(7)ACG-3’. Influences on genome-wide nucleosome occupancy and affects chromatin structure, and probably dynam [...] (731 aa)    
Predicted Functional Partners:
RAD16
Protein that recognizes and binds damaged DNA in an ATP-dependent manner (with Rad7p) during nucleotide excision repair; subunit of Nucleotide Excision Repair Factor 4 (NEF4) and the Elongin-Cullin-Socs (ECS) ligase complex; Component of the global genome repair (GGR) complex which promotes global genome nucleotide excision repair (GG-NER) which removes DNA damage from nontranscribing DNA. Involved in differential repair of DNA after UV damage. Will repair preferentially the MAT-alpha locus compared with the HML-alpha locus (790 aa)
       
  0.977
RAD7
Protein that recognizes and binds damaged DNA in an ATP-dependent manner (with Rad16p) during nucleotide excision repair; subunit of Nucleotide Excision Repair Factor 4 (NEF4) and the Elongin-Cullin-Socs (ECS) ligase complex; Component of the global genome repair (GGR) complex which promotes global genome nucleotide excision repair (GG-NER) which removes DNA damage from nontranscribing DNA. This protein is one of 10 proteins (RAD1, 2,3,4,7,10,14, 16,23 and MMS19) involved in excision repair of DNA damaged with UV light, bulky adducts, or cross-linking agents (565 aa)
       
  0.977
RAP1
DNA-binding protein involved in either activation or repression of transcription, depending on binding site context; also binds telomere sequences and plays a role in telomeric position effect (silencing) and telomere structure; Essential regulatory protein in yeast whose DNA-binding sites are found at three types of chromosomal elements- promoters, silencers, and telomeres. RAP1 is also involved in the regulation of telomere structure, where its binding sites are found within the terminal poly[C(1-3)A] sequences. The opposite regulatory functions of RAP1 are not intrinsic to its bindi [...] (827 aa)
     
   
  0.927
RAD2
Single-stranded DNA endonuclease, cleaves single-stranded DNA during nucleotide excision repair to excise damaged DNA; subunit of Nucleotide Excision Repair Factor 3 (NEF3); homolog of human XPG protein; Single-stranded DNA endonuclease involved in excision repair of DNA damaged with UV light, bulky adducts, or cross- linking agents. Essential for the incision step of excision- repair (1031 aa)
         
  0.909
RAD4
Protein that recognizes and binds damaged DNA (with Rad23p) during nucleotide excision repair; subunit of Nuclear Excision Repair Factor 2 (NEF2); also involved, with Rad23p, in turnover of ubiquitylated proteins; Involved in nucleotide excision repair of DNA damaged with UV light, bulky adducts, or cross-linking agents (754 aa)
         
  0.902
RAD23
Protein with ubiquitin-like N terminus, subunit of Nuclear Excision Repair Factor 2 (NEF2) with Rad4p that binds damaged DNA; enhances protein deglycosylation activity of Png1p; also involved, with Rad4p, in ubiquitylated protein turnover; Plays a central role both in proteasomal degradation of misfolded proteins and DNA repair. Central component of a complex required to couple deglycosylation and proteasome-mediated degradation of misfolded proteins in the endoplasmic reticulum that are retrotranslocated in the cytosol. Involved in DNA excision repair. May play a part in DNA damage re [...] (398 aa)
         
  0.901
SSL1
Subunit of the core form of RNA polymerase transcription factor TFIIH; has both protein kinase and DNA-dependent ATPase/helicase activities; essential for transcription and nucleotide excision repair; interacts with Tfb4p; Acts as component of the general transcription and DNA repair factor IIH (TFIIH) core, which is essential for both basal and activated transcription, and is involved in nucleotide excision repair (NER) of damaged DNA. TFIIH has CTD kinase and DNA-dependent ATPase activity, and is essential for polymerase II transcription in vitro. SSL1 is essential for translation in [...] (461 aa)
       
    0.901
TFB1
Subunit of TFIIH and nucleotide excision repair factor 3 complexes, required for nucleotide excision repair, target for transcriptional activators; Acts as component of the general transcription and DNA repair factor IIH (TFIIH) core, which is essential for both basal and activated transcription, and is involved in nucleotide excision repair (NER) of damaged DNA. TFIIH has CTD kinase and DNA-dependent ATPase activity, and is essential for polymerase II transcription in vitro (642 aa)
       
    0.901
DPB2
Second largest subunit of DNA polymerase II (DNA polymerase epsilon), required for normal yeast chromosomal replication; expression peaks at the G1/S phase boundary; potential Cdc28p substrate; DNA polymerase epsilon (DNA polymerase II) participates in chromosomal DNA replication. It is required during synthesis of the leading and lagging DNA strands at the replication fork and binds at/or near replication origins and moves along DNA with the replication fork. It has 3’-5’ proofreading exonuclease activity that correct errors arising during DNA replication. It is also involved in DNA s [...] (689 aa)
         
    0.900
POL2
Catalytic subunit of DNA polymerase (II) epsilon, a chromosomal DNA replication polymerase that exhibits processivity and proofreading exonuclease activity; also involved in DNA synthesis during DNA repair; interacts extensively with Mrc1p; DNA polymerase epsilon (DNA polymerase II) participates in chromosomal DNA replication. It is required during synthesis of the leading and lagging DNA strands at the replication fork and binds at/or near replication origins and moves along DNA with the replication fork. It has 3’-5’ proofreading exonuclease activity that correct errors arising durin [...] (2222 aa)
         
    0.900
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (2%) [HD]