STRINGSTRING
APL2 protein (Saccharomyces cerevisiae) - STRING interaction network
"APL2" - Beta-adaptin, large subunit of the clathrin-associated protein in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
APL2Beta-adaptin, large subunit of the clathrin-associated protein (AP-1) complex; binds clathrin; involved in clathrin-dependent Golgi protein sorting; Adaptins are components of the adaptor complexes which link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration. The AP-1 complex interacts directly with clathrin (726 aa)    
Predicted Functional Partners:
APL4
Gamma-adaptin, large subunit of the clathrin-associated protein (AP-1) complex; binds clathrin; involved in vesicle mediated transport; Adaptins are components of the adaptor complexes which link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration. The AP-1 complex interacts directly with clathrin (832 aa)
     
  0.999
APM1
Mu1-like medium subunit of the clathrin-associated protein complex (AP-1); binds clathrin; involved in clathrin-dependent Golgi protein sorting; Component of the adaptor complexes which link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration. The AP-1 complex interacts directly with clathrin. AP57 is probably a subunit of the Golgi membrane adaptor (475 aa)
     
  0.999
APM2
Protein of unknown function, homologous to the medium chain of mammalian clathrin-associated protein complex; involved in vesicular transport (605 aa)
     
  0.999
APS1
Small subunit of the clathrin-associated adaptor complex AP-1; AP-1 is involved in protein sorting at the trans-Golgi network; homolog of the sigma subunit of the mammalian clathrin AP-1 complex; Component of the adaptor complexes which link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration. AP19 is probably a subunit of the Golgi membrane adaptor (156 aa)
     
  0.998
APL3
Alpha-adaptin, large subunit of the clathrin associated protein complex (AP-2); involved in vesicle mediated transport; Adaptins are components of the adaptor complexes which link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration. Alpha adaptin is a subunit of the plasma membrane adaptor. Facilitates interaction between APL1 and APS2 (1025 aa)
     
  0.998
CHC1
Clathrin heavy chain, subunit of the major coat protein involved in intracellular protein transport and endocytosis; two heavy chains form the clathrin triskelion structural component; the light chain (CLC1) is thought to regulate function; Clathrin is the major protein of the polyhedral coat of coated pits and vesicles. In yeast, it is involved in the retention of proteins in an intracellular membrane compartment, presumably the trans-Golgi (1653 aa)
     
  0.996
APS2
Small subunit of the clathrin-associated adaptor complex AP-2; AP-2 is involved in protein sorting at the plasma membrane; related to the sigma subunit of the mammalian plasma membrane clathrin-associated protein (AP-2) complex; Component of the adaptor complexes which link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration (147 aa)
       
  0.993
APM4
Mu2-like subunit of the clathrin associated protein complex (AP-2); involved in vesicle transport; Component of the adaptor complexes which link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration (491 aa)
     
  0.992
ENT5
Protein containing an N-terminal epsin-like domain involved in clathrin recruitment and traffic between the Golgi and endosomes; associates with the clathrin adaptor Gga2p, clathrin adaptor complex AP-1, and clathrin; Involved in the recruitment of clathrin to the Golgi network and endosomes to form clathrin coated vesicles. Plays a role in the trafficking of clathrin between the Golgi network and endosomes. Binds to membranes enriched in phosphatidylinositol- 3,5-bisphosphate (PtdIns(3,5)P2) and, in association with VPS27, is involved in protein sorting at the multivesicular body (MVB) (411 aa)
     
  0.973
CLC1
Clathrin light chain, subunit of the major coat protein involved in intracellular protein transport and endocytosis; thought to regulate clathrin function; two Clathrin heavy chains (CHC1) form the clathrin triskelion structural component; Clathrin is the major protein of the polyhedral coat of coated pits and vesicles. In yeast, it is involved in the retention of proteins in an intracellular membrane compartment, presumably the trans-Golgi. The yeast light chain is important for cell growth. The light chain may help to properly orient the assembly/ disassembly of the clathrin coats (233 aa)
       
  0.963
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (11%) [HD]