STRINGSTRING
SAC1 protein (Saccharomyces cerevisiae) - STRING interaction network
"SAC1" - Phosphatidylinositol phosphate in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SAC1Phosphatidylinositol phosphate (PtdInsP) phosphatase involved in hydrolysis of PtdIns[4]P; transmembrane protein localizes to ER and Golgi; involved in protein trafficking and processing, secretion, and cell wall maintenance; Phosphoinositide phosphatase that hydrolyzes PtdIns(3)P and PtdIns(4)P. Has low activity towards PtdIns(3,5)P2. May be involved in the coordination of the activities of the secretory pathway and the actin cytoskeleton (623 aa)    
Predicted Functional Partners:
FAB1
1-phosphatidylinositol-3-phosphate 5-kinase; vacuolar membrane kinase that generates phosphatidylinositol (3,5)P2, which is involved in vacuolar sorting and homeostasis; The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Catalyzes the phosphorylation of phosphatidylinositol 3-phosphate on the fifth hydroxyl of the myo- inositol ring, to form phosphatidylinositol 3,5-bisphosphate. Required for endocytic-vacuolar pathway and nuclear migration. The product of the reaction it catalyzes functions as an importa [...] (2278 aa)
     
  0.990
LCB1
Component of serine palmitoyltransferase, responsible along with Lcb2p for the first committed step in sphingolipid synthesis, which is the condensation of serine with palmitoyl-CoA to form 3-ketosphinganine; Component of serine palmitoyltransferase (SPT), which catalyzes the committed step in the synthesis of sphingolipids, the condensation of serine with palmitoyl CoA to form the long chain base 3-ketosphinganine (558 aa)
     
  0.955
LCB2
Component of serine palmitoyltransferase, responsible along with Lcb1p for the first committed step in sphingolipid synthesis, which is the condensation of serine with palmitoyl-CoA to form 3-ketosphinganine; Catalytic subunit of serine palmitoyltransferase (SPT), which catalyzes the committed step in the synthesis of sphingolipids, the condensation of serine with palmitoyl CoA to form the long chain base 3-ketosphinganine (561 aa)
     
  0.947
INP54
Phosphatidylinositol 4,5-bisphosphate 5-phosphatase; role in secretion; localizes to the endoplasmic reticulum via the C-terminal tail; lacks the Sac1 domain and proline-rich region found in the other 3 INP proteins; Regulates the phosphatidylinositol (4,5)-diphosphate levels on the cytoplasmic surface of the endoplasmic reticulum and thereby regulates secretion. Does not utilize phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), nor phosphatidylinositol 3- phosphate (PtdIns(3)P) and phosphatidylinositol 4-phosphate (PtdIns(4)P) (384 aa)
     
  0.944
STT4
Phosphatidylinositol-4-kinase; functions in the Pkc1p protein kinase pathway; required for normal vacuole morphology, cell wall integrity, and actin cytoskeleton organization; Acts on phosphatidylinositol (PI) in the first committed step in the production of the second messenger inositol 1,4,5,- trisphosphate. STT4 functions in PKC1 protein kinase pathway (1900 aa)
     
 
  0.942
VPS74
Protein required for Golgi localization of glycosyltransferases; binds the cytosolic domains of Golgi glycosyltransferases; binding to PtdIns4P required for Golgi targeting and function; tetramer formation required for function; Phosphatidylinositol-4-phosphate-binding protein that links Golgi membranes to the cytoskeleton and may participate in the tensile force required for vesicle budding from the Golgi. Thereby, may play a role in Golgi membrane trafficking and could indirectly give its flattened shape to the Golgi apparatus. May also bind to the coatomer to regulate Golgi membrane [...] (345 aa)
     
 
  0.942
TSC3
Protein that stimulates the activity of serine palmitoyltransferase (Lcb1p, Lcb2p) several-fold; involved in sphingolipid biosynthesis; Stimulates the activity of serine palmitoyltransferase (SPT) (80 aa)
         
  0.937
ORM1
Evolutionarily conserved protein, similar to Orm2p, required for resistance to agents that induce unfolded protein response; Orm1p and Orm2p together control membrane biogenesis by coordinating lipid homeostasis with protein quality control; Component of the SPOTS complex that acts as a negative regulator of sphingolipid synthesis. Acts by inhibiting serine palmitoyltransferases (LCB1 and LCB2) activity (222 aa)
     
  0.930
ORM2
Evolutionarily conserved protein, similar to Orm1p, required for resistance to agents that induce unfolded protein response; Orm1p and Orm2p together control membrane biogenesis by coordinating lipid homeostasis with protein quality control; Component of the SPOTS complex that acts as a negative regulator of sphingolipid synthesis. Acts by inhibiting serine palmitoyltransferases (LCB1 and LCB2) activity (216 aa)
     
  0.928
PIK1
Phosphatidylinositol 4-kinase; catalyzes first step in the biosynthesis of phosphatidylinositol-4,5-biphosphate; may control cytokinesis through the actin cytoskeleton; Acts on phosphatidylinositol (PI) in the first committed step in the production of the second messenger inositol 1,4,5,- trisphosphate. PIK1 is part of a nuclear phosphoinositide cycle and could control cytokinesis through the actin cytoskeleton (1066 aa)
     
 
  0.919
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (4%) [HD]