STRINGSTRING
MTD1 protein (Saccharomyces cerevisiae) - STRING interaction network
"MTD1" - NAD-dependent 5,10-methylenetetrahydrafolate dehydrogenase, plays a catalytic role in oxidation of cytoplasmic one-carbon units in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
MTD1NAD-dependent 5,10-methylenetetrahydrafolate dehydrogenase, plays a catalytic role in oxidation of cytoplasmic one-carbon units; expression is regulated by Bas1p and Bas2p, repressed by adenine, and may be induced by inositol and choline; Catalyzes oxidation of cytoplasmic one-carbon units for purine biosynthesis (320 aa)    
Predicted Functional Partners:
SHM2
Cytosolic serine hydroxymethyltransferase, converts serine to glycine plus 5,10 methylenetetrahydrofolate; major isoform involved in generating precursors for purine, pyrimidine, amino acid, and lipid biosynthesis; Interconversion of serine and glycine (469 aa)
   
 
  0.999
GCV1
T subunit of the mitochondrial glycine decarboxylase complex, required for the catabolism of glycine to 5,10-methylene-THF; expression is regulated by levels of levels of 5,10-methylene-THF in the cytoplasm; The glycine cleavage system (glycine decarboxylase complex) catalyzes the degradation of glycine (400 aa)
   
 
  0.999
GCV2
P subunit of the mitochondrial glycine decarboxylase complex, required for the catabolism of glycine to 5,10-methylene-THF; expression is regulated by levels of 5,10-methylene-THF in the cytoplasm; The glycine cleavage system (glycine decarboxylase complex) catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein (1034 aa)
   
 
  0.996
ADE8
Phosphoribosyl-glycinamide transformylase, catalyzes a step in the ’de novo’ purine nucleotide biosynthetic pathway (214 aa)
   
 
  0.989
ADE17
Enzyme of ’de novo’ purine biosynthesis containing both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities, isozyme of Ade16p; ade16 ade17 mutants require adenine and histidine (592 aa)
   
 
  0.988
ADE5,7
Enzyme of the ’de novo’ purine nucleotide biosynthetic pathway; contains aminoimidazole ribotide synthetase and glycinamide ribotide synthetase activities (802 aa)
   
 
  0.987
GCV3
H subunit of the mitochondrial glycine decarboxylase complex, required for the catabolism of glycine to 5,10-methylene-THF; also required for all protein lipoylation; expression is regulated by levels of 5,10-methylene-THF; The glycine cleavage system (glycine decarboxylase complex) catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein (By similarity) (170 aa)
   
 
  0.987
FAU1
5,10-methenyltetrahydrofolate synthetase, involved in folic acid biosynthesis; Only enzyme known to utilize 5-formyltetrahydrofolate (folinic acid) as substrate. Contributes to tetrahydrofolate metabolism in an alternative way of folate biosynthesis. May regulate carbon flow through the folate-dependent one-carbon metabolic network that supplies carbon for the biosynthesis of purines, thymidine and amino acids (211 aa)
       
  0.982
SHM1
Mitochondrial serine hydroxymethyltransferase, converts serine to glycine plus 5,10 methylenetetrahydrofolate; involved in generating precursors for purine, pyrimidine, amino acid, and lipid biosynthesis; reverse reaction generates serine; Interconversion of serine and glycine (490 aa)
   
 
  0.982
MIS1
Mitochondrial C1-tetrahydrofolate synthase, involved in interconversion between different oxidation states of tetrahydrofolate (THF); provides activities of formyl-THF synthetase, methenyl-THF cyclohydrolase, and methylene-THF dehydrogenase (975 aa)
   
 
0.979
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (14%) [HD]