STRINGSTRING
PSR1 protein (Saccharomyces cerevisiae) - STRING interaction network
"PSR1" - Plasma membrane associated protein phosphatase involved in the general stress response in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
PSR1Plasma membrane associated protein phosphatase involved in the general stress response; required along with binding partner Whi2p for full activation of STRE-mediated gene expression, possibly through dephosphorylation of Msn2p; Has phosphatase activity in vitro. Involved in the response to sodium and lithium ion stress (but not to potassium or sorbitol stress) by inducing transcription of the sodium pump ENA1/PMR2. Acts through a calcineurin-independent pathway and is functionally redundant with PSR2. Also involved in the general stress response; acts together with WHI2 to activate st [...] (427 aa)    
Predicted Functional Partners:
WHI2
Protein required, with binding partner Psr1p, for full activation of the general stress response, possibly through Msn2p dephosphorylation; regulates growth during the diauxic shift; negative regulator of G1 cyclin expression; Plays a role in the coordination of growth and proliferation. Required for entry into G0 phase under conditions of carbon limitation. Involved in the general stress response; acts together with PSR1 to activate stress response element (STRE)-mediated gene expression, possibly through dephosphorylation of MSN2 (486 aa)
     
 
  0.935
TFG1
TFIIF (Transcription Factor II) largest subunit; involved in both transcription initiation and elongation of RNA polymerase II; homologous to human RAP74; TFIIF is a general transcription initiation factor that binds to RNA polymerase II. Its functions include the recruitment of RNA polymerase II to the promoter bound DNA-TBP-TFIIB complex, decreasing the affinity of RNA polymerase II for non-specific DNA, allowing for the subsequent recruitment of TFIIE and TFIIH, and facilitating RNA polymerase II elongation (735 aa)
     
 
  0.826
RPA190
RNA polymerase I largest subunit A190; DNA-dependent RNA polymerases catalyze the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I (Pol I) which synthesizes ribosomal RNA precursors. Besides, RNA polymerase I has intrinsic RNA cleavage activity. RPA190 and RPA135 both contribute to the polymerase catalytic activity and together form the Pol I active center. In addition, subunit RPA12 contributes a catalytic zinc ribbon that is required for RNA cleavage by Pol I. A single stranded DNA template strand of the promoter i [...] (1664 aa)
       
 
  0.755
RPO31
RNA polymerase III largest subunit C160, part of core enzyme; similar to bacterial beta-prime subunit and to RPA190 and RPO21; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic core component of RNA polymerase III which synthesizes small RNAs, such as 5S rRNA and tRNAs. Forms the polymerase active center together with the second largest subunit. A single-stranded DNA template strand of the promoter is positioned within the central active site cleft of Pol III. A bridging helix emanat [...] (1460 aa)
       
 
  0.755
RPO21
RNA polymerase II largest subunit B220, part of central core; phosphorylation of C-terminal heptapeptide repeat domain regulates association with transcription and splicing factors; similar to bacterial beta-prime; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal [...] (1733 aa)
       
 
  0.755
VHS2
Cytoplasmic protein of unknown function; identified as a high-copy suppressor of the synthetic lethality of a sis2 sit4 double mutant, suggesting a role in G1/S phase progression; similar to Mlf3p; Can suppress the synthetic lethality of the hal3 sit4 double mutation when overexpressed, suggesting that it is involved in the G1-S transition (436 aa)
       
      0.699
GLC7
Type 1 serine/threonine protein phosphatase catalytic subunit, involved in many processes (eg- glycogen metabolism, sporulation, mitosis); accumulates at mating projections by interaction with Afr1p; interacts with many regulatory subunits; Involved in control of glycogen metabolism, meiosis, translation, chromosome segregation, cell polarity and G2/M cell cycle progression. PP1 may act in opposition to the IPL1 protein kinase in regulating chromosome segregation by dephosphorylating H3S10ph. The BUD14-GLC7 complex is necessary to regulate microtubule dynamics at the cortex and may fun [...] (312 aa)
       
 
  0.673
RPB9
RNA polymerase II subunit B12.6; contacts DNA; mutations affect transcription start site selection and fidelity of transcription; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB9 is part of the upper jaw surrounding the central large cleft and th [...] (122 aa)
     
 
  0.643
PSR2
Functionally redundant Psr1p homolog, a plasma membrane phosphatase involved in the general stress response; required with Psr1p and Whi2p for full activation of STRE-mediated gene expression, possibly through dephosphorylation of Msn2p; Probable phosphatase. Involved in the response to sodium and lithium ion stress (but not to potassium or sorbitol stress) by inducing transcription of the sodium pump ENA1/PMR2. Acts through a calcineurin-independent pathway and is functionally redundant with PSR1. Also involved in the general stress response; acts together with WHI2 to activate stress [...] (397 aa)
       
 
0.639
ACT1
Actin, structural protein involved in cell polarization, endocytosis, and other cytoskeletal functions; Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells (375 aa)
           
  0.624
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (9%) [HD]