STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
RPL8BRibosomal 60S subunit protein L8B; required for processing of 27SA3 pre-rRNA to 27SB pre-rRNA during assembly of large ribosomal subunit; depletion leads to a turnover of pre-rRNA; L8 binds to Domain I of 25S and 5.8 S rRNAs; mutation results in decreased amounts of free 60S subunits; homologous to mammalian ribosomal protein L7A, no bacterial homolog; RPL8B has a paralog, RPL8A, that arose from the whole genome duplication. (256 aa)    
Predicted Functional Partners:
RPL32
Ribosomal 60S subunit protein L32; overexpression disrupts telomeric silencing; homologous to mammalian ribosomal protein L32, no bacterial homolog.
   
 0.999
RPL21A
Ribosomal 60S subunit protein L21A; homologous to mammalian ribosomal protein L21, no bacterial homolog; RPL21A has a paralog, RPL21B, that arose from the whole genome duplication.
   
 0.999
RPL13A
Ribosomal 60S subunit protein L13A; not essential for viability; homologous to mammalian ribosomal protein L13, no bacterial homolog; RPL13A has a paralog, RPL13B, that arose from the whole genome duplication.
   
 
 0.999
RPS13
Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S13 and bacterial S15.
  
 
 0.999
RPL2A
Ribosomal 60S subunit protein L2A; homologous to mammalian ribosomal protein L2 and bacterial L2; RPL2A has a paralog, RPL2B, that arose from the whole genome duplication.
  
 
 0.999
RPL29
Ribosomal 60S subunit protein L29; not essential for translation, but required for proper joining of large and small ribosomal subunits and for normal translation rate; homologous to mammalian ribosomal protein L29, no bacterial homolog; Belongs to the eukaryotic ribosomal protein eL29 family.
   
 0.999
RPL30
Ribosomal 60S subunit protein L30; involved in pre-rRNA processing in the nucleolus; autoregulates splicing of its transcript; homologous to mammalian ribosomal protein L30, no bacterial homolog.
   
 0.999
RPL24A
Ribosomal 60S subunit protein L24A; not essential for translation but may be required for normal translation rate; homologous to mammalian ribosomal protein L24, no bacterial homolog; RPL24A has a paralog, RPL24B, that arose from the whole genome duplication.
  
 0.999
RPL28
Ribosomal 60S subunit protein L28; homologous to mammalian ribosomal protein L27A and bacterial L15; may have peptidyl transferase activity; can mutate to cycloheximide resistance.
  
 0.999
RPS2
Protein component of the small (40S) subunit; essential for control of translational accuracy; phosphorylation by C-terminal domain kinase I (CTDK-I) enhances translational accuracy; methylated on one or more arginine residues by Hmt1p; homologous to mammalian ribosomal protein S2 and bacterial S5.
  
 
 0.999
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (30%) [HD]