STRINGSTRING
FRE8 protein (Saccharomyces cerevisiae) - STRING interaction network
"FRE8" - Protein with sequence similarity to iron/copper reductases, involved in iron homeostasis in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
FRE8Protein with sequence similarity to iron/copper reductases, involved in iron homeostasis; deletion mutant has iron deficiency/accumulation growth defects; expression increased in the absence of copper-responsive transcription factor Mac1p; Required for the uptake of Fe(3+) ions. May participate in the transport of electrons from cytoplasm to an extracellular substrate (Fe(3+) ion) via FAD and heme intermediates (By similarity). Involved in iron homeostasis (686 aa)    
Predicted Functional Partners:
FRE7
Putative ferric reductase with similarity to Fre2p; expression induced by low copper levels; Cell surface metalloreductase. May be involved in copper homeostasis (620 aa)
           
  0.829
FRE1
Ferric reductase and cupric reductase, reduces siderophore-bound iron and oxidized copper prior to uptake by transporters; expression induced by low copper and iron levels; Metalloreductase responsible for reducing extracellular iron and copper prior to import. Catalyzes the reductive uptake of Fe(3+)-salts and Fe(3+) bound to catecholate or hydroxamate siderophores. Fe(3+) is reduced to Fe(2+), which then dissociates from the siderophore and can be imported by the high-affinity Fe(2+) transport complex in the plasma membrane. Also participates in Cu(2+) reduction and Cu(+) uptake (686 aa)
           
  0.829
FRE6
Putative ferric reductase with similarity to Fre2p; expression induced by low iron levels; Metalloreductase responsible for reducing vacuolar iron and copper prior to transport into the cytosol. Catalyzes the reduction of Fe(3+) to Fe(2+) and Cu(2+) to Cu(+), respectively, which can then be transported by the respective vacuolar efflux systems to the cytosol (712 aa)
           
  0.829
FRE2
Ferric reductase and cupric reductase, reduces siderophore-bound iron and oxidized copper prior to uptake by transporters; expression induced by low iron levels but not by low copper levels; Metalloreductase responsible for reducing extracellular iron and copper prior to import. Catalyzes the reductive uptake of Fe(3+)-salts and Fe(3+) bound to catecholate or hydroxamate siderophores. Fe(3+) is reduced to Fe(2+), which then dissociates from the siderophore and can be imported by the high-affinity Fe(2+) transport complex in the plasma membrane. Also participates in Cu(2+) reduction and [...] (711 aa)
           
  0.829
FRE3
Ferric reductase, reduces siderophore-bound iron prior to uptake by transporters; expression induced by low iron levels; Siderophore-iron reductase responsible for reducing extracellular iron prior to import. Catalyzes the reductive uptake of Fe(3+) bound to di- and trihydroxamate siderophores. Fe(3+) is reduced to Fe(2+), which then dissociates from the siderophore and can be imported by the high-affinity Fe(2+) transport complex in the plasma membrane (711 aa)
           
  0.825
FRE4
Ferric reductase, reduces a specific subset of siderophore-bound iron prior to uptake by transporters; expression induced by low iron levels; Siderophore-iron reductase responsible for reducing extracellular iron prior to import. Catalyzes the reductive uptake of Fe(3+) bound to dihydroxamate rhodotorulic acid. Fe(3+) is reduced to Fe(2+), which then dissociates from the siderophore and can be imported by the high-affinity Fe(2+) transport complex in the plasma membrane (719 aa)
           
  0.825
FRE5
Putative ferric reductase with similarity to Fre2p; expression induced by low iron levels; the authentic, non-tagged protein is detected in highly purified mitochondria in high-throughput studies; Metalloreductase responsible for reducing extracellular iron and copper prior to import. Catalyzes the reductive uptake of Fe(3+)-salts and Fe(3+) bound to catecholate or hydroxamate siderophores. Fe(3+) is reduced to Fe(2+), which then dissociates from the siderophore and can be imported by the high-affinity Fe(2+) transport complex in the plasma membrane (By similarity) (694 aa)
           
  0.824
YJL120W
Dubious open reading frame unlikely to encode a protein, based on available experimental and comparative sequence data; partially overlaps the verified gene YJL121C/RPE1; deletion confers sensitivity to GSAO; Deletion confers sensitivity to the synthetic tripeptide arsenical 4-(N-(S-glutathionylacetyl)amino) phenylarsenoxide (GSAO) (107 aa)
           
  0.542
FTR1
High affinity iron permease involved in the transport of iron across the plasma membrane; forms complex with Fet3p; expression is regulated by iron; Permease for high affinity iron uptake (404 aa)
     
   
  0.528
RHO1
GTP-binding protein of the rho subfamily of Ras-like proteins, involved in establishment of cell polarity; regulates protein kinase C (Pkc1p) and the cell wall synthesizing enzyme 1,3-beta-glucan synthase (Fks1p and Gsc2p); Acts as a central regulator in the cell wall integrity signaling pathway, which is regulated by the cell cycle and in response to various types of cell wall stress. Integrates signals from different cell surface sensors, and activates a set of effectors, regulating processes including beta-glucan synthesis at the site of wall remodeling, gene expression related to c [...] (209 aa)
       
  0.512
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (3%) [HD]