STRINGSTRING
GAL2 protein (Saccharomyces cerevisiae) - STRING interaction network
"GAL2" - Galactose permease, required for utilization of galactose in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
GAL2Galactose permease, required for utilization of galactose; also able to transport glucose; GAL2 is a facilitated diffusion transporter required for both the high-affinity galactokinase-dependent and low-affinity galactokinase-independent galactose transport processes (574 aa)    
Predicted Functional Partners:
GAL10
UDP-glucose-4-epimerase, catalyzes the interconversion of UDP-galactose and UDP-D-glucose in galactose metabolism; also catalyzes the conversion of alpha-D-glucose or alpha-D-galactose to their beta-anomers; Mutarotase converts alpha-aldose to the beta-anomer. It is active on D-glucose, L-arabinose, D-xylose, D-galactose, maltose and lactose (By similarity) (699 aa)
   
 
  0.998
GAL7
Galactose-1-phosphate uridyl transferase, synthesizes glucose-1-phosphate and UDP-galactose from UDP-D-glucose and alpha-D-galactose-1-phosphate in the second step of galactose catabolism (366 aa)
   
 
  0.996
GAL1
Galactokinase, phosphorylates alpha-D-galactose to alpha-D-galactose-1-phosphate in the first step of galactose catabolism; expression regulated by Gal4p (528 aa)
   
 
  0.988
GAL80
Transcriptional regulator involved in the repression of GAL genes in the absence of galactose; inhibits transcriptional activation by Gal4p; inhibition relieved by Gal3p or Gal1p binding; This protein is a negative regulator for the gene expression of the lactose/galactose metabolic genes. It binds to GAL4 and so blocks transcriptional activation by it, in the absence of an inducing sugar (435 aa)
   
 
  0.953
SNF1
AMP-activated serine/threonine protein kinase found in a complex containing Snf4p and members of the Sip1p/Sip2p/Gal83p family; required for transcription of glucose-repressed genes, thermotolerance, sporulation, and peroxisome biogenesis; Essential for release from glucose repression. It interacts and has functional relationship to the regulatory protein SNF4. Could phosphorylate CAT8. Phosphorylates histone H3 to form H3S10ph, which promotes H3K14ac formation, and which is required for transcriptional activation through TBP recruitment to the promoters (633 aa)
         
  0.946
URA3
Orotidine-5’-phosphate (OMP) decarboxylase, catalyzes the sixth enzymatic step in the de novo biosynthesis of pyrimidines, converting OMP into uridine monophosphate (UMP); converts 5-FOA into 5-fluorouracil, a toxic compound (267 aa)
         
  0.927
SUC2
Invertase, sucrose hydrolyzing enzyme; a secreted, glycosylated form is regulated by glucose repression, and an intracellular, nonglycosylated enzyme is produced constitutively (532 aa)
         
  0.911
APL2
Beta-adaptin, large subunit of the clathrin-associated protein (AP-1) complex; binds clathrin; involved in clathrin-dependent Golgi protein sorting; Adaptins are components of the adaptor complexes which link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration. The AP-1 complex interacts directly with clathrin (726 aa)
       
  0.909
APM1
Mu1-like medium subunit of the clathrin-associated protein complex (AP-1); binds clathrin; involved in clathrin-dependent Golgi protein sorting; Component of the adaptor complexes which link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration. The AP-1 complex interacts directly with clathrin. AP57 is probably a subunit of the Golgi membrane adaptor (475 aa)
         
  0.905
APS1
Small subunit of the clathrin-associated adaptor complex AP-1; AP-1 is involved in protein sorting at the trans-Golgi network; homolog of the sigma subunit of the mammalian clathrin AP-1 complex; Component of the adaptor complexes which link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration. AP19 is probably a subunit of the Golgi membrane adaptor (156 aa)
 
     
    0.900
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (4%) [HD]