STRINGSTRING
ALT1 protein (Saccharomyces cerevisiae) - STRING interaction network
"ALT1" - Alanine transaminase (glutamic pyruvic transaminase) in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ALT1Alanine transaminase (glutamic pyruvic transaminase); involved in alanine biosynthetic and catabolic processes; the authentic, non-tagged protein is detected in highly purified mitochondria in high-throughput studies (592 aa)    
Predicted Functional Partners:
GDH3
NADP(+)-dependent glutamate dehydrogenase, synthesizes glutamate from ammonia and alpha-ketoglutarate; rate of alpha-ketoglutarate utilization differs from Gdh1p; expression regulated by nitrogen and carbon sources (457 aa)
   
 
  0.983
GDH1
NADP(+)-dependent glutamate dehydrogenase, synthesizes glutamate from ammonia and alpha-ketoglutarate; rate of alpha-ketoglutarate utilization differs from Gdh3p; expression regulated by nitrogen and carbon sources (454 aa)
   
 
  0.982
ALT2
Putative alanine transaminase (glutamic pyruvic transaminase) (507 aa)
   
 
0.973
GDH2
NAD(+)-dependent glutamate dehydrogenase, degrades glutamate to ammonia and alpha-ketoglutarate; expression sensitive to nitrogen catabolite repression and intracellular ammonia levels; NAD(+)-dependent glutamate dehydrogenase which degrades glutamate to ammonia and alpha-ketoglutarate (1092 aa)
     
 
  0.970
ARG7
Mitochondrial ornithine acetyltransferase, catalyzes the fifth step in arginine biosynthesis; also possesses acetylglutamate synthase activity, regenerates acetylglutamate while forming ornithine; Catalyzes two activities which are involved in the cyclic version of arginine biosynthesis- the synthesis of acetylglutamate from glutamate and acetyl-CoA, and of ornithine by transacetylation between acetylornithine and glutamate (441 aa)
       
  0.960
GLT1
NAD(+)-dependent glutamate synthase (GOGAT), synthesizes glutamate from glutamine and alpha-ketoglutarate; with Gln1p, forms the secondary pathway for glutamate biosynthesis from ammonia; expression regulated by nitrogen source; Forms L-glutamate from L-glutamine and 2-oxoglutarate. Represents an alternative pathway to L-glutamate dehydrogenase for the biosynthesis of L-glutamate. Participates with glutamine synthetase in ammonia assimilation processes. The enzyme is specific for NADH, L-glutamine and 2-oxoglutarate (2145 aa)
   
  0.940
FUM1
Fumarase, converts fumaric acid to L-malic acid in the TCA cycle; cytosolic and mitochondrial distribution determined by the N-terminal targeting sequence, protein conformation, and status of glyoxylate shunt; phosphorylated in mitochondria (488 aa)
     
 
  0.935
SDH1
Flavoprotein subunit of succinate dehydrogenase (Sdh1p, Sdh2p, Sdh3p, Sdh4p), which couples the oxidation of succinate to the transfer of electrons to ubiquinone as part of the TCA cycle and the mitochondrial respiratory chain; Catalytic subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q). SDH1 and SDH2 form the catalytic dimer. Electrons flow from succinate to the FAD bound to SDH1, and sequentially through the iron-sulfur clusters b [...] (640 aa)
     
 
  0.934
YJL045W
Minor succinate dehydrogenase isozyme; homologous to Sdh1p, the major isozyme reponsible for the oxidation of succinate and transfer of electrons to ubiquinone; induced during the diauxic shift in a Cat8p-dependent manner; Probable minor catalytic subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q). Probably forms a catalytic dimer with SDH2. Electrons flow from succinate to the FAD bound to the catalytic subunit, and sequentially thr [...] (634 aa)
     
 
  0.932
AGX1
Alanine-glyoxylate aminotransferase (AGT), catalyzes the synthesis of glycine from glyoxylate, which is one of three pathways for glycine biosynthesis in yeast; has similarity to mammalian and plant alanine-glyoxylate aminotransferases; Has alanine-glyoxylate aminotransferase activity (385 aa)
   
 
  0.931
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (6%) [HD]