STRINGSTRING
MSL5 protein (Saccharomyces cerevisiae) - STRING interaction network
"MSL5" - Component of the commitment complex, which defines the first step in the splicing pathway in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
MSL5Component of the commitment complex, which defines the first step in the splicing pathway; essential protein that interacts with Mud2p and Prp40p, forming a bridge between the intron ends; also involved in nuclear retention of pre-mRNA; Required for pre-spliceosome formation, which is the first step of pre-mRNA splicing. 2 commitment complexes, CC1 and CC2, have been defined. CC1 is a basal complex dependent only on the 5’-splice site. CC2 is a complex of lower mobility and is dependent on a branchpoint as well as a 5’-splice site region. This protein is involved in CC2 formation where [...] (476 aa)    
Predicted Functional Partners:
MUD2
Protein involved in early pre-mRNA splicing; component of the pre-mRNA-U1 snRNP complex, the commitment complex; interacts with Msl5p/BBP splicing factor and Sub2p; similar to metazoan splicing factor U2AF65; Splicing factor that contacts pre-mRNA directly and is a component of the pre-mRNA-U1 snRNP complex (commitment complex 2) that forms during early spliceosome assembly in yeast extracts (527 aa)
     
 
  0.999
MUD1
U1 snRNP A protein, homolog of human U1-A; involved in nuclear mRNA splicing; Involved in nuclear mRNA splicing. The principal role of the U1A is to help fold or maintain U1 RNA in an active configuration. It is the first snRNP to interact with pre-mRNA. This interaction is required for the subsequent binding of U2 snRNP and the U4/U6/U5 tri-snRNP (298 aa)
     
 
  0.996
NAM8
RNA binding protein, component of the U1 snRNP protein; mutants are defective in meiotic recombination and in formation of viable spores, involved in the formation of DSBs through meiosis-specific splicing of REC107 pre-mRNA; Nam8p regulon embraces /.../iotic pre-mRNAs of REC107, HFM1, AMA1 SPO22 and PCH2; the putative RNA binding domains RRM2 and RRM3 are required for Nam8p meiotic function; Acts as a suppressor of mitochondrial splicing deficiencies when overexpressed. Could be a non-essential component of the mitochondrial splicing machinery (523 aa)
     
 
  0.993
CDC40
Pre-mRNA splicing factor, important for catalytic step II of pre-mRNA splicing and plays a role in cell cycle progression; required for DNA synthesis during mitosis and meiosis; has WD repeats; May function in the second step of pre-mRNA splicing. Regulatory protein involved in replication and mitotic spindle formation and/or maintenance. Required for initiation and completion of S-phase and for initiation and completion of DNA replication. Might be required for the maintenance of microtubules. Essential only at elevated temperatures (455 aa)
     
 
  0.988
PRP19
Splicing factor associated with the spliceosome; contains a U-box, a motif found in a class of ubiquitin ligases, and a WD40 domain; Probable ubiquitin-protein ligase involved in pre-mRNA splicing. Acts as a central component of the NTC complex (or PRP19-associated complex) that associates to the spliceosome to mediate conformational rearrangement or to stabilize the structure of the spliceosome after U4 snRNA dissociation, which leads to spliceosome maturation. It is also probably involved in DNA repair (503 aa)
     
 
  0.985
SNP1
Component of U1 snRNP required for mRNA splicing via spliceosome; substrate of the arginine methyltransferase Hmt1p; may interact with poly(A) polymerase to regulate polyadenylation; homolog of human U1 70K protein; Involved in nuclear mRNA splicing (300 aa)
     
 
  0.981
CEF1
Essential splicing factor; associated with Prp19p and the spliceosome, contains an N-terminal c-Myb DNA binding motif necessary for cell viability but not for Prp19p association, evolutionarily conserved and homologous to S. pombe Cdc5p; Involved in pre-mRNA splicing and cell cycle control. Required for the binding of the NTC complex (or PRP19-associated complex) components to the spliceosome to mediate conformational rearrangement or to stabilize the structure of the spliceosome after U4 snRNA dissociation, which leads to spliceosome maturation. Its absence leads to an arrest of the c [...] (590 aa)
     
 
  0.981
PRP40
U1 snRNP protein involved in splicing, interacts with the branchpoint-binding protein during the formation of the second commitment complex; Required for pre-spliceosome formation, which is the first step of pre-mRNA splicing. This protein is associated with snRNP U1. Two commitment complexes, CC1 and CC2, have been defined in yeast. CC1 is a basal complex dependent only on the 5’ splice site. CC2 is a complex of lower mobility and is dependent on a branchpoint as well as a 5’ splice site region. This protein is involved in CC2 formation where it binds to the branchpoint binding protei [...] (583 aa)
     
 
  0.970
NPL3
RNA-binding protein that promotes elongation, regulates termination, and carries poly(A) mRNA from nucleus to cytoplasm; required for pre-mRNA splicing; dissociation from mRNAs promoted by Mtr10p; phosphorylated by Sky1p in the cytoplasm; Required for pre-rRNA processing and nuclear import as well as mitochondrial protein targeting. Binds to poly(A) (414 aa)
     
 
  0.968
NGR1
RNA binding protein that negatively regulates growth rate; interacts with the 3’ UTR of the mitochondrial porin (POR1) mRNA and enhances its degradation; overexpression impairs mitochondrial function; interacts with Dhh1p to mediate POR1 mRNA decay; /.../ssed in stationary phase; May be an RNA-binding protein involved in control of an RNA processing pathway that influences the regulation of cell growth in early log phase. Can bind to RNA and single-stranded DNA but not double-stranded DNA (672 aa)
     
 
  0.959
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (11%) [HD]