STRINGSTRING
IDP2 protein (Saccharomyces cerevisiae) - STRING interaction network
"IDP2" - Cytosolic NADP-specific isocitrate dehydrogenase, catalyzes oxidation of isocitrate to alpha-ketoglutarate in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
IDP2Cytosolic NADP-specific isocitrate dehydrogenase, catalyzes oxidation of isocitrate to alpha-ketoglutarate; levels are elevated during growth on non-fermentable carbon sources and reduced during growth on glucose; May function in the production of NADPH for fatty acid and sterol synthesis (412 aa)    
Predicted Functional Partners:
IDH2
Subunit of mitochondrial NAD(+)-dependent isocitrate dehydrogenase, which catalyzes the oxidation of isocitrate to alpha-ketoglutarate in the TCA cycle; phosphorylated; Performs an essential role in the oxidative function of the citric acid cycle. Also binds RNA; specifically to the 5’- untranslated leaders of mitochondrial mRNAs (369 aa)
   
  0.994
IDH1
Subunit of mitochondrial NAD(+)-dependent isocitrate dehydrogenase, which catalyzes the oxidation of isocitrate to alpha-ketoglutarate in the TCA cycle; Performs an essential role in the oxidative function of the citric acid cycle. Also binds RNA; specifically to the 5’- untranslated leaders of mitochondrial mRNAs (360 aa)
   
  0.993
ACO1
Aconitase, required for the tricarboxylic acid (TCA) cycle and also independently required for mitochondrial genome maintenance; phosphorylated; component of the mitochondrial nucleoid; mutation leads to glutamate auxotrophy; Catalyzes the isomerization of citrate to isocitrate via cis-aconitate, a step in the citric acid cycle. Can also provide minor contributions to the reversible dehydration of (R)- homocitrate to cis-homoaconitate, a step in the alpha-aminoadipate pathway for lysine biosynthesis. Plays also an essential role in mtDNA maintenance. May directly protect mtDNA from acc [...] (778 aa)
   
  0.991
KGD1
Subunit of the mitochondrial alpha-ketoglutarate dehydrogenase complex; catalyzes a key step in the tricarboxylic acid (TCA) cycle, the oxidative decarboxylation of alpha-ketoglutarate to form succinyl-CoA; The 2-oxoglutarate dehydrogenase complex catalyzes the overall conversion of 2-oxoglutarate to succinyl-CoA and CO(2). It contains multiple copies of three enzymatic components- 2- oxoglutarate dehydrogenase (E1), dihydrolipoamide succinyltransferase (E2) and lipoamide dehydrogenase (E3) (1014 aa)
     
 
  0.987
MLS1
Malate synthase, enzyme of the glyoxylate cycle, involved in utilization of non-fermentable carbon sources; expression is subject to carbon catabolite repression; localizes in peroxisomes during growth in oleic acid medium; This isozyme is necessary for growth on acetate as sole C-source (554 aa)
     
   
  0.983
SFC1
Mitochondrial succinate-fumarate transporter, transports succinate into and fumarate out of the mitochondrion; required for ethanol and acetate utilization; Transports cytoplasmic succinate, derived from isocitrate by the action of isocitrate lyase in the cytosol, into the mitochondrial matrix in exchange for fumarate (322 aa)
     
   
  0.980
ICL1
Isocitrate lyase, catalyzes the formation of succinate and glyoxylate from isocitrate, a key reaction of the glyoxylate cycle; expression of ICL1 is induced by growth on ethanol and repressed by growth on glucose; Catalyzes the formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle. Required for growth on ethanol or acetate, but dispensable when fermentable carbon sources are available. Acts also on 2- methylisocitrate (557 aa)
     
   
  0.979
IDP3
Peroxisomal NADP-dependent isocitrate dehydrogenase, catalyzes oxidation of isocitrate to alpha-ketoglutarate with the formation of NADP(H+), required for growth on unsaturated fatty acids; May function in the production of NADPH for fatty acid and sterol synthesis (420 aa)
   
0.976
FBP1
Fructose-1,6-bisphosphatase, key regulatory enzyme in the gluconeogenesis pathway, required for glucose metabolism; undergoes either proteasome-mediated or autophagy-mediated degradation depending on growth conditions; interacts with Vid30p (348 aa)
     
   
  0.974
YEF1
ATP-NADH kinase; phosphorylates both NAD and NADH; homooctameric structure consisting of 60-kDa subunits; sequence similarity to Utr1p and Pos5p; overexpression complements certain pos5 phenotypes; ATP-NADH kinase with a low phosphorylation activity of both NADH and NAD(+) to produce NADP and NADPH by using ATP. UTR1 is responsible for essentially all of the NAD/NADH kinase activity resident in the cytoplasm, whereas POS5 is responsible for all mitochondrial NAD/NADH kinase activity and consequent mitochondrial genome maintenance. YEF1 can substitute for UTR1 when overexpressed (495 aa)
         
  0.971
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (7%) [HD]