RFX1 protein (Saccharomyces cerevisiae) - STRING interaction network
"RFX1" - Major transcriptional repressor of DNA-damage-regulated genes, recruits repressors Tup1p and Cyc8p to their promoters in Saccharomyces cerevisiae
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
RFX1Major transcriptional repressor of DNA-damage-regulated genes, recruits repressors Tup1p and Cyc8p to their promoters; involved in DNA damage and replication checkpoint pathway; similar to a family of mammalian DNA binding RFX1-4 proteins (811 aa)    
Predicted Functional Partners:
Protein kinase, required for cell-cycle arrest in response to DNA damage; activated by trans autophosphorylation when interacting with hyperphosphorylated Rad9p; also interacts with ARS1 and plays a role in initiation of DNA replication; Controls S-phase checkpoint as well as G1 and G2 DNA damage checkpoints. Phosphorylates proteins on serine, threonine, and tyrosine. Prevents entry into anaphase and mitotic exit after DNA damage via regulation of the Polo kinase CDC5. Seems to be involved in the phosphorylation of RPH1 (821 aa)
Genome integrity checkpoint protein and PI kinase superfamily member; signal transducer required for cell cycle arrest and transcriptional responses prompted by damaged or unreplicated DNA; monitors and participates in meiotic recombination; Serine/threonine protein kinase which activates checkpoint signaling upon genotoxic stresses such as ionizing radiation (IR), ultraviolet light (UV), or DNA replication stalling, thereby acting as a DNA damage sensor. Recognizes the substrate consensus sequence [ST]-Q. Recruited in complex with protein LCD1 by the single-strand-binding protein comp [...] (2368 aa)
Cell-cycle checkpoint serine-threonine kinase required for DNA damage-induced transcription of certain target genes, phosphorylation of Rad55p and Sml1p, and transient G2/M arrest after DNA damage; also regulates postreplicative DNA repair; Transducer of the DNA damage signal. Phosphorylates SML1 on serine residues. Cooperates with the PAN deadenylation complex in the regulation of RAD5 mRNA levels and cell survival in response to replicational stress (513 aa)
Subunit of the anaphase-promoting complex/cyclosome (APC/C), which is a ubiquitin-protein ligase required for degradation of anaphase inhibitors, including mitotic cyclins, during the metaphase/anaphase transition; required for sporulation; Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin-protein ligase complex that controls progression through mitosis and the G1 phase of the cell cycle. The APC/C is thought to confer substrate specificity and, in the presence of ubiquitin-conjugating E2 enzymes, it catalyzes the formation of protein-ub [...] (840 aa)
Separase, a caspase-like cysteine protease that promotes sister chromatid separation by mediating dissociation of the cohesin Scc1p from chromatin; inhibits protein phosphatase 2A-Cdc55p to promote mitotic exit; inhibited by Pds1p; Caspase-like protease, which plays a central role in the chromosome segregation by cleaving the MCD1/SCC1 subunit of the cohesin complex at the onset of anaphase. During most of the cell cycle, it is inactivated by securin/PDS1 protein. It also promotes anaphase spindle elongation. A component of the FEAR (CDC14 early anaphase release) network which promotes [...] (1630 aa)
RNA polymerase I enhancer binding protein; DNA binding protein which binds to genes transcribed by both RNA polymerase I and RNA polymerase II; required for termination of RNA polymerase I transcription; DNA-binding protein that recognizes sites within both the enhancer and the promoter of rRNA transcription, as well as upstream of many genes transcribed by RNA polymerase II. It is essential for cell growth. May stimulate or inhibit transcription. Specifically recognizes the sequence 5’-CCGGGTA-3’ or 5’-CGGGTRR- 3’ (where R is any purine). A member of the general regulatory factors (GR [...] (810 aa)
Ribonucleotide-diphosphate reductase (RNR), small subunit; the RNR complex catalyzes the rate-limiting step in dNTP synthesis and is regulated by DNA replication and DNA damage checkpoint pathways via localization of the small subunits; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. RNR2 provides the diiron-tyrosyl radical center (399 aa)
General transcriptional co-repressor, acts together with Tup1p; also acts as part of a transcriptional co-activator complex that recruits the SWI/SNF and SAGA complexes to promoters; can form the prion [OCT+]; Acts as component of the CYC8-TUP1 corepressor complex which is involved in the repression of many genes in a wide variety of physiological processes including heme-regulated and catabolite repressed genes. May also be involved in the derepression of at least some target genes. The complex is recruited to target genes by interaction with DNA-bound transcriptional repressors, like [...] (966 aa)
ATP-dependent DNA translocase involved in chromatin remodeling; ATPase component that, with Itc1p, forms a complex required for repression of a-specific genes, INO1, and early meiotic genes during mitotic growth; Catalytic component of the ISW2 complex, which acts in remodeling the chromatin by catalyzing an ATP-dependent alteration in the structure of nucleosomal DNA. THe ISW2 complex is involved in coordinating transcriptional repression and in inheritance of telomeric silencing. It is involved in repression of MAT a- specific genes, INO1, and early meiotic genes during mitotic growt [...] (1120 aa)
Member of the imitation-switch (ISWI) class of ATP-dependent chromatin remodeling complexes; ATPase that forms a complex with Ioc2p and Ioc4p to regulate transcription elongation, and a complex with Ioc3p to repress transcription initiation; Catalytic component of ISW1-type complexes, which act by remodeling the chromatin by catalyzing an ATP-dependent alteration in the structure of nucleosomal DNA. They are involved in coordinating transcriptional repression, activation and elongation phases. The ISW1A complex represses gene expression at initiation through specific positioning of a p [...] (1129 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (4%) [HD]