STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
PNP1Purine nucleoside phosphorylase; specifically metabolizes inosine and guanosine nucleosides; involved in the nicotinamide riboside salvage pathway; Belongs to the PNP/MTAP phosphorylase family (311 aa)    
Predicted Functional Partners:
URH1
Uridine nucleosidase (uridine-cytidine N-ribohydrolase); cleaves N-glycosidic bonds in nucleosides; involved in the pyrimidine salvage and nicotinamide riboside salvage pathways; Belongs to the IUNH family
   
 0.997
ISN1
IMP-specific 5'-nucleotidase 1; Inosine 5'-monophosphate (IMP)-specific 5'-nucleotidase; catalyzes the breakdown of IMP to inosine; responsible for production of nicotinamide riboside and nicotinic acid riboside; expression positively regulated by nicotinic acid and glucose availability; does not show similarity to known 5'-nucleotidases from other organisms; Belongs to the ISN1 family
     
 0.994
CDD1
Cytidine deaminase; catalyzes the modification of cytidine to uridine in vitro but native RNA substrates have not been identified, localizes to both the nucleus and cytoplasm
 
 
 0.989
GUD1
Guanine deaminase; a catabolic enzyme of the guanine salvage pathway producing xanthine and ammonia from guanine; activity is low in exponentially-growing cultures but expression is increased in post-diauxic and stationary-phase cultures
  
 
 0.988
AAH1
Adenine deaminase (adenine aminohydrolase); converts adenine to hypoxanthine; involved in purine salvage; transcriptionally regulated by nutrient levels and growth phase; Aah1p degraded upon entry into quiescence via SCF and the proteasome
  
 
 0.988
ADO1
Adenosine kinase; required for the utilization of S-adenosylmethionine (AdoMet); may be involved in recycling adenosine produced through the methyl cycle
  
 
 0.985
SDT1
Suppressor of disruption of TFIIS; Pyrimidine nucleotidase; responsible for production of nicotinamide riboside and nicotinic acid riboside; overexpression suppresses the 6-AU sensitivity of transcription elongation factor S-II, as well as resistance to other pyrimidine derivatives; SDT1 has a paralog, PHM8, that arose from the whole genome duplication
   
 
 0.983
SIR2
Conserved NAD+ dependent histone deacetylase of the Sirtuin family; deacetylation targets are primarily nuclear proteins; required for telomere hypercluster formation in quiescent yeast cells; involved in regulation of lifespan; plays roles in silencing at HML, HMR, telomeres, and rDNA; negatively regulates initiation of DNA replication; functions as regulator of autophagy like mammalian homolog SIRT1, and also of mitophagy
   
 0.979
HPT1
Dimeric hypoxanthine-guanine phosphoribosyltransferase; catalyzes the transfer of the phosphoribosyl portion of 5-phosphoribosyl-alpha-1-pyrophosphate to a purine base (either guanine or hypoxanthine) to form pyrophosphate and a purine nucleotide (either guanosine monophosphate or inosine monophosphate); mutations in the human homolog HPRT1 can cause Lesch-Nyhan syndrome and Kelley-Seegmiller syndrome
    
 0.977
NPT1
Nicotinate phosphoribosyltransferase; acts in the salvage pathway of NAD+ biosynthesis; required for silencing at rDNA and telomeres and has a role in silencing at mating-type loci; localized to the nucleus
    
 0.969
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (14%) [HD]