STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ECM22Sterol regulatory element binding protein; regulates transcription of sterol biosynthetic genes upon sterol depletion, after relocating from intracellular membranes to perinuclear foci; redundant activator of filamentation with UPC2, up-regulating the expression of genes involved in filamentous growth; contains Zn[2]-Cys[6] binuclear cluster; ECM22 has a paralog, UPC2, that arose from the whole genome duplication. (814 aa)    
Predicted Functional Partners:
UPC2
Sterol uptake control protein 2; Sterol regulatory element binding protein; induces sterol biosynthetic genes, upon sterol depletion; acts as a sterol sensor, binding ergosterol in sterol rich conditions; relocates from intracellular membranes to perinuclear foci upon sterol depletion; redundant activator of filamentation with ECM22, up-regulating the expression of filamentous growth genes; contains a Zn[2]-Cys[6] binuclear cluster; UPC2 has a paralog, ECM22, that arose from the whole genome duplication.
  
 
0.879
MOT3
Transcriptional activator/repressor MOT3; Transcriptional repressor, activator; role in cellular adjustment to osmotic stress including modulation of mating efficiency; involved in repression of subset of hypoxic genes by Rox1p, repression of several DAN/TIR genes during aerobic growth, ergosterol biosynthetic genes in response to hyperosmotic stress; contributes to recruitment of Tup1p-Cyc8p general repressor to promoters; relocalizes to cytosol under hypoxia; forms [MOT3+] prion under anaerobic conditions.
   
 
 0.865
ERG2
C-8 sterol isomerase; catalyzes isomerization of delta-8 double bond to delta-7 position at an intermediate step in ergosterol biosynthesis; transcriptionally down-regulated when ergosterol is in excess; mutation is functionally complemented by human EBP.
    
 
 0.848
ERG3
Delta(7)-sterol 5(6)-desaturase; C-5 sterol desaturase; glycoprotein that catalyzes the introduction of a C-5(6) double bond into episterol, a precursor in ergosterol biosynthesis; transcriptionally down-regulated when ergosterol is in excess; mutants are viable, but cannot grow on non-fermentable carbon sources; substrate of HRD ubiquitin ligase; mutation is functionally complemented by human SC5D.
   
 
 0.746
ROX1
Heme-dependent repressor of hypoxic genes; mediates aerobic transcriptional repression of hypoxia induced genes such as COX5b and CYC7; repressor function regulated through decreased promoter occupancy in response to oxidative stress; contains an HMG domain that is responsible for DNA bending activity; involved in the hyperosmotic stress resistance.
    
 
 0.710
ERG1
Squalene epoxidase; catalyzes the epoxidation of squalene to 2,3-oxidosqualene; plays an essential role in the ergosterol-biosynthesis pathway and is the specific target of the antifungal drug terbinafine; human SQLE functionally complements the lethality of the erg1 null mutation.
   
 
 0.620
ERG11
Lanosterol 14-alpha-demethylase; catalyzes C-14 demethylation of lanosterol to form 4,4''-dimethyl cholesta-8,14,24-triene-3-beta-ol in ergosterol biosynthesis pathway; transcriptionally down-regulated when ergosterol is in excess; member of cytochrome P450 family; associated and coordinately regulated with the P450 reductase Ncp1p; human CYP51A1 functionally complements the lethality of the erg11 null mutation.
   
  
 0.579
ARX1
Probable metalloprotease ARX1; Nuclear export factor for the ribosomal pre-60S subunit; shuttling factor which directly binds FG rich nucleoporins and facilities translocation through the nuclear pore complex; interacts directly with Alb1p; responsible for Tif6p recycling defects in the absence of Rei1; associated with the ribosomal export complex.
  
   0.559
RGM1
Probable transcription repressor protein RGM1; Putative zinc finger DNA binding transcription factor; contains two N-terminal C2H2 zinc fingers and C-terminal proline rich domain; overproduction impairs cell growth and induces expression of genes involved in monosaccharide catabolism and aldehyde metabolism; regulates expression of of Y' telomeric elements and subtelomeric COS genes; relocalizes to the cytosol in response to hypoxia; RGM1 has a paralog, USV1, that arose from the whole genome duplication.
   
 
 0.542
ERG6
Delta(24)-sterol C-methyltransferase; converts zymosterol to fecosterol in the ergosterol biosynthetic pathway by methylating position C-24; localized to lipid particles, the plasma membrane-associated endoplasmic reticulum, and the mitochondrial outer membrane; Belongs to the class I-like SAM-binding methyltransferase superfamily. Erg6/SMT family.
    
 
 0.539
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, Mycoderma cerevisiae, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, yeast
Server load: low (28%) [HD]