node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AGE2 | CSR1 | YIL044C | YLR380W | ADP-ribosylation factor (ARF) GTPase activating protein (GAP) effector; involved in Trans-Golgi-Network (TGN) transport; contains C2C2H2 cysteine/histidine motif | Phosphatidylinositol transfer protein; has a potential role in regulating lipid and fatty acid metabolism under heme-depleted conditions; interacts specifically with thioredoxin peroxidase; may have a role in oxidative stress resistance; protein abundance increases in response to DNA replication stress; Belongs to the PITP family | 0.812 |
AGE2 | GCS1 | YIL044C | YDL226C | ADP-ribosylation factor (ARF) GTPase activating protein (GAP) effector; involved in Trans-Golgi-Network (TGN) transport; contains C2C2H2 cysteine/histidine motif | ADP-ribosylation factor GTPase activating protein (ARF GAP); involved in ER-Golgi transport; required for prospore membrane formation; regulates phospholipase Spo14p; shares functional similarity with Glo3p; GCS1 has a paralog, SPS18, that arose from the whole genome duplication | 0.881 |
AGE2 | SEC14 | YIL044C | YMR079W | ADP-ribosylation factor (ARF) GTPase activating protein (GAP) effector; involved in Trans-Golgi-Network (TGN) transport; contains C2C2H2 cysteine/histidine motif | SEC14 cytosolic factor; Phosphatidylinositol/phosphatidylcholine transfer protein; involved in regulating PtdIns, PtdCho, and ceramide metabolism, products of which regulate intracellular transport and UPR; has a role in localization of lipid raft proteins; functionally homologous to mammalian PITPs; SEC14 has a paralog, YKL091C, that arose from the whole genome duplication | 0.756 |
CSR1 | AGE2 | YLR380W | YIL044C | Phosphatidylinositol transfer protein; has a potential role in regulating lipid and fatty acid metabolism under heme-depleted conditions; interacts specifically with thioredoxin peroxidase; may have a role in oxidative stress resistance; protein abundance increases in response to DNA replication stress; Belongs to the PITP family | ADP-ribosylation factor (ARF) GTPase activating protein (GAP) effector; involved in Trans-Golgi-Network (TGN) transport; contains C2C2H2 cysteine/histidine motif | 0.812 |
CSR1 | GCS1 | YLR380W | YDL226C | Phosphatidylinositol transfer protein; has a potential role in regulating lipid and fatty acid metabolism under heme-depleted conditions; interacts specifically with thioredoxin peroxidase; may have a role in oxidative stress resistance; protein abundance increases in response to DNA replication stress; Belongs to the PITP family | ADP-ribosylation factor GTPase activating protein (ARF GAP); involved in ER-Golgi transport; required for prospore membrane formation; regulates phospholipase Spo14p; shares functional similarity with Glo3p; GCS1 has a paralog, SPS18, that arose from the whole genome duplication | 0.745 |
CSR1 | GPN3 | YLR380W | YLR243W | Phosphatidylinositol transfer protein; has a potential role in regulating lipid and fatty acid metabolism under heme-depleted conditions; interacts specifically with thioredoxin peroxidase; may have a role in oxidative stress resistance; protein abundance increases in response to DNA replication stress; Belongs to the PITP family | GPN-loop GTPase 3; Putative GTPase with a role in biogenesis of RNA pol II and polIII; may be involved in assembly of RNA polymerases II and III and in their transport into the nucleus; may have a role in sister chromatid cohesion; SWAT-GFP and mCherry fusion proteins localize to the endoplasmic reticulum and vacuole respectively; contains a Gly-Pro-Asn motif in the G domain; similar to Npa3p and Gpn2p | 0.728 |
CSR1 | SEC14 | YLR380W | YMR079W | Phosphatidylinositol transfer protein; has a potential role in regulating lipid and fatty acid metabolism under heme-depleted conditions; interacts specifically with thioredoxin peroxidase; may have a role in oxidative stress resistance; protein abundance increases in response to DNA replication stress; Belongs to the PITP family | SEC14 cytosolic factor; Phosphatidylinositol/phosphatidylcholine transfer protein; involved in regulating PtdIns, PtdCho, and ceramide metabolism, products of which regulate intracellular transport and UPR; has a role in localization of lipid raft proteins; functionally homologous to mammalian PITPs; SEC14 has a paralog, YKL091C, that arose from the whole genome duplication | 0.863 |
CSR1 | SFH5 | YLR380W | YJL145W | Phosphatidylinositol transfer protein; has a potential role in regulating lipid and fatty acid metabolism under heme-depleted conditions; interacts specifically with thioredoxin peroxidase; may have a role in oxidative stress resistance; protein abundance increases in response to DNA replication stress; Belongs to the PITP family | Non-classical phosphatidylinositol transfer protein (PITP); exhibits PI- but not PC-transfer activity; localizes to the peripheral endoplasmic reticulum, cytosol and microsomes; similar to Sec14p; partially relocalizes to the plasma membrane upon DNA replication stress | 0.925 |
CSR1 | YKE4 | YLR380W | YIL023C | Phosphatidylinositol transfer protein; has a potential role in regulating lipid and fatty acid metabolism under heme-depleted conditions; interacts specifically with thioredoxin peroxidase; may have a role in oxidative stress resistance; protein abundance increases in response to DNA replication stress; Belongs to the PITP family | Solute carrier family 39 (zinc transporter), member 7; Zinc transporter; localizes to the ER; null mutant is sensitive to calcofluor white, leads to zinc accumulation in cytosol; ortholog of the mouse KE4 and member of the ZIP (ZRT, IRT-like Protein) family | 0.713 |
CSR1 | YLR379W | YLR380W | YLR379W | Phosphatidylinositol transfer protein; has a potential role in regulating lipid and fatty acid metabolism under heme-depleted conditions; interacts specifically with thioredoxin peroxidase; may have a role in oxidative stress resistance; protein abundance increases in response to DNA replication stress; Belongs to the PITP family | Putative uncharacterized protein YLR379W; Dubious open reading frame; unlikely to encode a functional protein, based on available experimental and comparative sequence data; partially overlaps the essential ORF SEC61/YLR378C | 0.841 |
CSR1 | ZAP1 | YLR380W | YJL056C | Phosphatidylinositol transfer protein; has a potential role in regulating lipid and fatty acid metabolism under heme-depleted conditions; interacts specifically with thioredoxin peroxidase; may have a role in oxidative stress resistance; protein abundance increases in response to DNA replication stress; Belongs to the PITP family | Zinc-responsive transcriptional regulator ZAP1; Zinc-regulated transcription factor; binds to zinc-responsive promoters to induce transcription of certain genes in presence of zinc, represses other genes in low zinc; regulates its own transcription; contains seven zinc-finger domains | 0.760 |
CSR1 | ZRT1 | YLR380W | YGL255W | Phosphatidylinositol transfer protein; has a potential role in regulating lipid and fatty acid metabolism under heme-depleted conditions; interacts specifically with thioredoxin peroxidase; may have a role in oxidative stress resistance; protein abundance increases in response to DNA replication stress; Belongs to the PITP family | Solute carrier family 39 (zinc transporter), member 1/2/3; Zinc-regulated transporter 1; High-affinity zinc transporter of the plasma membrane; responsible for the majority of zinc uptake; transcription is induced under low-zinc conditions by the Zap1p transcription factor; Belongs to the ZIP transporter (TC 2.A.5) family | 0.748 |
CSR1 | ZRT2 | YLR380W | YLR130C | Phosphatidylinositol transfer protein; has a potential role in regulating lipid and fatty acid metabolism under heme-depleted conditions; interacts specifically with thioredoxin peroxidase; may have a role in oxidative stress resistance; protein abundance increases in response to DNA replication stress; Belongs to the PITP family | Solute carrier family 39 (zinc transporter), member 1/2/3; Zinc-regulated transporter 2; Low-affinity zinc transporter of the plasma membrane; transcription is induced under low-zinc conditions by the Zap1p transcription factor | 0.814 |
GCS1 | AGE2 | YDL226C | YIL044C | ADP-ribosylation factor GTPase activating protein (ARF GAP); involved in ER-Golgi transport; required for prospore membrane formation; regulates phospholipase Spo14p; shares functional similarity with Glo3p; GCS1 has a paralog, SPS18, that arose from the whole genome duplication | ADP-ribosylation factor (ARF) GTPase activating protein (GAP) effector; involved in Trans-Golgi-Network (TGN) transport; contains C2C2H2 cysteine/histidine motif | 0.881 |
GCS1 | CSR1 | YDL226C | YLR380W | ADP-ribosylation factor GTPase activating protein (ARF GAP); involved in ER-Golgi transport; required for prospore membrane formation; regulates phospholipase Spo14p; shares functional similarity with Glo3p; GCS1 has a paralog, SPS18, that arose from the whole genome duplication | Phosphatidylinositol transfer protein; has a potential role in regulating lipid and fatty acid metabolism under heme-depleted conditions; interacts specifically with thioredoxin peroxidase; may have a role in oxidative stress resistance; protein abundance increases in response to DNA replication stress; Belongs to the PITP family | 0.745 |
GCS1 | SEC14 | YDL226C | YMR079W | ADP-ribosylation factor GTPase activating protein (ARF GAP); involved in ER-Golgi transport; required for prospore membrane formation; regulates phospholipase Spo14p; shares functional similarity with Glo3p; GCS1 has a paralog, SPS18, that arose from the whole genome duplication | SEC14 cytosolic factor; Phosphatidylinositol/phosphatidylcholine transfer protein; involved in regulating PtdIns, PtdCho, and ceramide metabolism, products of which regulate intracellular transport and UPR; has a role in localization of lipid raft proteins; functionally homologous to mammalian PITPs; SEC14 has a paralog, YKL091C, that arose from the whole genome duplication | 0.817 |
GPN3 | CSR1 | YLR243W | YLR380W | GPN-loop GTPase 3; Putative GTPase with a role in biogenesis of RNA pol II and polIII; may be involved in assembly of RNA polymerases II and III and in their transport into the nucleus; may have a role in sister chromatid cohesion; SWAT-GFP and mCherry fusion proteins localize to the endoplasmic reticulum and vacuole respectively; contains a Gly-Pro-Asn motif in the G domain; similar to Npa3p and Gpn2p | Phosphatidylinositol transfer protein; has a potential role in regulating lipid and fatty acid metabolism under heme-depleted conditions; interacts specifically with thioredoxin peroxidase; may have a role in oxidative stress resistance; protein abundance increases in response to DNA replication stress; Belongs to the PITP family | 0.728 |
SEC14 | AGE2 | YMR079W | YIL044C | SEC14 cytosolic factor; Phosphatidylinositol/phosphatidylcholine transfer protein; involved in regulating PtdIns, PtdCho, and ceramide metabolism, products of which regulate intracellular transport and UPR; has a role in localization of lipid raft proteins; functionally homologous to mammalian PITPs; SEC14 has a paralog, YKL091C, that arose from the whole genome duplication | ADP-ribosylation factor (ARF) GTPase activating protein (GAP) effector; involved in Trans-Golgi-Network (TGN) transport; contains C2C2H2 cysteine/histidine motif | 0.756 |
SEC14 | CSR1 | YMR079W | YLR380W | SEC14 cytosolic factor; Phosphatidylinositol/phosphatidylcholine transfer protein; involved in regulating PtdIns, PtdCho, and ceramide metabolism, products of which regulate intracellular transport and UPR; has a role in localization of lipid raft proteins; functionally homologous to mammalian PITPs; SEC14 has a paralog, YKL091C, that arose from the whole genome duplication | Phosphatidylinositol transfer protein; has a potential role in regulating lipid and fatty acid metabolism under heme-depleted conditions; interacts specifically with thioredoxin peroxidase; may have a role in oxidative stress resistance; protein abundance increases in response to DNA replication stress; Belongs to the PITP family | 0.863 |
SEC14 | GCS1 | YMR079W | YDL226C | SEC14 cytosolic factor; Phosphatidylinositol/phosphatidylcholine transfer protein; involved in regulating PtdIns, PtdCho, and ceramide metabolism, products of which regulate intracellular transport and UPR; has a role in localization of lipid raft proteins; functionally homologous to mammalian PITPs; SEC14 has a paralog, YKL091C, that arose from the whole genome duplication | ADP-ribosylation factor GTPase activating protein (ARF GAP); involved in ER-Golgi transport; required for prospore membrane formation; regulates phospholipase Spo14p; shares functional similarity with Glo3p; GCS1 has a paralog, SPS18, that arose from the whole genome duplication | 0.817 |