STRINGSTRING
IMD3 protein (Saccharomyces cerevisiae) - STRING interaction network
"IMD3" - Inosine monophosphate dehydrogenase, catalyzes the first step of GMP biosynthesis, member of a four-gene family in S. cerevisiae, constitutively expressed in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
IMD3Inosine monophosphate dehydrogenase, catalyzes the first step of GMP biosynthesis, member of a four-gene family in S. cerevisiae, constitutively expressed; Catalyzes the conversion of inosine 5’-phosphate (IMP) to xanthosine 5’-phosphate (XMP), the first committed and rate- limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth (523 aa)    
Predicted Functional Partners:
GUA1
GMP synthase; highly conserved enzyme that catalyzes the second step in the biosynthesis of GMP from inosine 5’-phosphate (IMP); transcription is not subject to regulation by guanine but is negatively regulated by nutrient starvation; reduction-of-f /.../n mutation gua1-G388D causes changes in cellular guanine nucleotide pools, defects in general protein synthesis, and impaired translation of GCN4 mRNA (525 aa)
 
  0.999
IMD2
Inosine monophosphate dehydrogenase, catalyzes the rate-limiting step in GTP biosynthesis, expression is induced by mycophenolic acid resulting in resistance to the drug, expression is repressed by nutrient limitatio; Catalyzes the conversion of inosine 5’-phosphate (IMP) to xanthosine 5’-phosphate (XMP), the first committed and rate- limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. In contrast to the other IMPDH alleles IMD3 and IMD4, the enzymatic activity of IMD2 seems to be intrinsically drug resistant (523 aa)
 
0.999
YLR126C
Putative protein of unknown function with similarity to glutamine amidotransferase proteins; has Aft1p-binding motif in the promoter; may be involved in copper and iron homeostasis; YLR126C is not an essential protein; May have a role in copper and iron homeostasis (251 aa)
   
  0.998
IMD4
Inosine monophosphate dehydrogenase, catalyzes the first step of GMP biosynthesis, member of a four-gene family in S. cerevisiae, constitutively expressed; Catalyzes the conversion of inosine 5’-phosphate (IMP) to xanthosine 5’-phosphate (XMP), the first committed and rate- limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth (524 aa)
   
0.997
IMD1
Nonfunctional protein with homology to IMP dehydrogenase; probable pseudogene, located close to the telomere; is not expressed at detectable levels; YAR073W and YAR075W comprise a continuous reading frame in some strains of S. cerevisiae (403 aa)
 
0.996
ADE17
Enzyme of ’de novo’ purine biosynthesis containing both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities, isozyme of Ade16p; ade16 ade17 mutants require adenine and histidine (592 aa)
   
 
  0.986
URA2
Bifunctional carbamoylphosphate synthetase/aspartate transcarbamylase; catalyzes the first two enzymatic steps in the de novo biosynthesis of pyrimidines; both activities are subject to feedback inhibition by UTP; This protein is a "fusion" protein encoding three enzymatic activities of the pyrimidine pathway (GATase, CPSase, and ATCase) (2214 aa)
   
 
  0.983
ADE16
Enzyme of ’de novo’ purine biosynthesis containing both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities, isozyme of Ade17p; ade16 ade17 mutants require adenine and histidine (591 aa)
   
 
  0.979
ADE12
Adenylosuccinate synthase, catalyzes the first step in synthesis of adenosine monophosphate from inosine 5’monophosphate during purine nucleotide biosynthesis; exhibits binding to single-stranded autonomously replicating (ARS) core sequence; Plays an important role in the de novo pathway and in the salvage pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP (433 aa)
   
 
  0.975
HAM1
Conserved protein with deoxyribonucleoside triphosphate pyrophosphohydrolase activity, mediates exclusion of noncanonical purines from deoxyribonucleoside triphosphate pools; mutant is sensitive to the base analog 6-N-hydroxylaminopurine; Pyrophosphatase that hydrolyzes the non-canonical purine nucleotides inosine triphosphate (ITP), deoxyinosine triphosphate (dITP) as well as 2’-deoxy-N-6-hydroxylaminopurine triposphate (dHAPTP) and 5-bromodeoxyuridine 5’-triphosphate (BrdUTP) to their respective monophosphate derivatives. Xanthosine 5’-triphosphate (XTP) is also a potential substrate [...] (197 aa)
   
    0.968
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (5%) [HD]