node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ADE12 | ADE16 | YNL220W | YLR028C | Adenylosuccinate synthase; catalyzes the first step in synthesis of adenosine monophosphate from inosine 5'monophosphate during purine nucleotide biosynthesis; exhibits binding to single-stranded autonomously replicating (ARS) core sequence | Bifunctional purine biosynthesis protein ADE16; Enzyme of 'de novo' purine biosynthesis; contains both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities; ADE16 has a paralog, ADE17, that arose from the whole genome duplication; ade16 ade17 mutants require adenine and histidine; Belongs to the PurH family | 0.994 |
ADE12 | ADE17 | YNL220W | YMR120C | Adenylosuccinate synthase; catalyzes the first step in synthesis of adenosine monophosphate from inosine 5'monophosphate during purine nucleotide biosynthesis; exhibits binding to single-stranded autonomously replicating (ARS) core sequence | Bifunctional purine biosynthesis protein ADE17; Enzyme of 'de novo' purine biosynthesis; contains both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities; ADE17 has a paralog, ADE16, that arose from the whole genome duplication; ade16 ade17 mutants require adenine and histidine; Belongs to the PurH family | 0.997 |
ADE12 | AMD1 | YNL220W | YML035C | Adenylosuccinate synthase; catalyzes the first step in synthesis of adenosine monophosphate from inosine 5'monophosphate during purine nucleotide biosynthesis; exhibits binding to single-stranded autonomously replicating (ARS) core sequence | AMP deaminase; tetrameric enzyme that catalyzes the deamination of AMP to form IMP and ammonia; thought to be involved in regulation of intracellular purine (adenine, guanine, and inosine) nucleotide pools | 0.991 |
ADE12 | GUA1 | YNL220W | YMR217W | Adenylosuccinate synthase; catalyzes the first step in synthesis of adenosine monophosphate from inosine 5'monophosphate during purine nucleotide biosynthesis; exhibits binding to single-stranded autonomously replicating (ARS) core sequence | GMP synthase; highly conserved enzyme that catalyzes the second step in the biosynthesis of GMP from inosine 5'-phosphate (IMP); transcription is not subject to regulation by guanine but is negatively regulated by nutrient starvation; reduction-of-function mutation gua1-G388D causes changes in cellular guanine nucleotide pools, defects in general protein synthesis, and impaired translation of GCN4 mRNA | 0.982 |
ADE12 | HAM1 | YNL220W | YJR069C | Adenylosuccinate synthase; catalyzes the first step in synthesis of adenosine monophosphate from inosine 5'monophosphate during purine nucleotide biosynthesis; exhibits binding to single-stranded autonomously replicating (ARS) core sequence | Inosine triphosphate pyrophosphatase; Nucleoside triphosphate pyrophosphohydrolase; active against various substrates including ITP, dITP and XTP; mediates exclusion of non canonical purines, pyrimidines from dNTP pools; functions with YJL055W to mediate resistance to 5-FU; specifically reduces the incorporation of 5-FU into RNA without affecting uptake or incorporation of uracil into RNA; protein abundance increases in response to DNA replication stress; yeast HAM1 can complement knockdown of human homolog ITPA | 0.996 |
ADE12 | HPT1 | YNL220W | YDR399W | Adenylosuccinate synthase; catalyzes the first step in synthesis of adenosine monophosphate from inosine 5'monophosphate during purine nucleotide biosynthesis; exhibits binding to single-stranded autonomously replicating (ARS) core sequence | Dimeric hypoxanthine-guanine phosphoribosyltransferase; catalyzes the transfer of the phosphoribosyl portion of 5-phosphoribosyl-alpha-1-pyrophosphate to a purine base (either guanine or hypoxanthine) to form pyrophosphate and a purine nucleotide (either guanosine monophosphate or inosine monophosphate); mutations in the human homolog HPRT1 can cause Lesch-Nyhan syndrome and Kelley-Seegmiller syndrome | 0.992 |
ADE12 | IMD2 | YNL220W | YHR216W | Adenylosuccinate synthase; catalyzes the first step in synthesis of adenosine monophosphate from inosine 5'monophosphate during purine nucleotide biosynthesis; exhibits binding to single-stranded autonomously replicating (ARS) core sequence | Inosine-5'-monophosphate dehydrogenase 2; Inosine monophosphate dehydrogenase; catalyzes the rate-limiting step in GTP biosynthesis, expression is induced by mycophenolic acid resulting in resistance to the drug, expression is repressed by nutrient limitation; IMD2 has a paralog, YAR073W/YAR075W, that arose from a segmental duplication | 0.988 |
ADE12 | IMD3 | YNL220W | YLR432W | Adenylosuccinate synthase; catalyzes the first step in synthesis of adenosine monophosphate from inosine 5'monophosphate during purine nucleotide biosynthesis; exhibits binding to single-stranded autonomously replicating (ARS) core sequence | Inosine-5'-monophosphate dehydrogenase 3; Inosine monophosphate dehydrogenase; catalyzes the rate-limiting step in the de novo synthesis of GTP; member of a four-gene family in S. cerevisiae, constitutively expressed; IMD3 has a paralog, IMD4, that arose from the whole genome duplication; Belongs to the IMPDH/GMPR family | 0.989 |
ADE12 | IMD4 | YNL220W | YML056C | Adenylosuccinate synthase; catalyzes the first step in synthesis of adenosine monophosphate from inosine 5'monophosphate during purine nucleotide biosynthesis; exhibits binding to single-stranded autonomously replicating (ARS) core sequence | Inosine-5'-monophosphate dehydrogenase 4; Inosine monophosphate dehydrogenase; catalyzes the rate-limiting step in the de novo synthesis of GTP; member of a four-gene family in S. cerevisiae, constitutively expressed; IMD4 has a paralog, IMD3, that arose from the whole genome duplication | 0.976 |
ADE16 | ADE12 | YLR028C | YNL220W | Bifunctional purine biosynthesis protein ADE16; Enzyme of 'de novo' purine biosynthesis; contains both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities; ADE16 has a paralog, ADE17, that arose from the whole genome duplication; ade16 ade17 mutants require adenine and histidine; Belongs to the PurH family | Adenylosuccinate synthase; catalyzes the first step in synthesis of adenosine monophosphate from inosine 5'monophosphate during purine nucleotide biosynthesis; exhibits binding to single-stranded autonomously replicating (ARS) core sequence | 0.994 |
ADE16 | ADE17 | YLR028C | YMR120C | Bifunctional purine biosynthesis protein ADE16; Enzyme of 'de novo' purine biosynthesis; contains both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities; ADE16 has a paralog, ADE17, that arose from the whole genome duplication; ade16 ade17 mutants require adenine and histidine; Belongs to the PurH family | Bifunctional purine biosynthesis protein ADE17; Enzyme of 'de novo' purine biosynthesis; contains both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities; ADE17 has a paralog, ADE16, that arose from the whole genome duplication; ade16 ade17 mutants require adenine and histidine; Belongs to the PurH family | 0.999 |
ADE16 | AMD1 | YLR028C | YML035C | Bifunctional purine biosynthesis protein ADE16; Enzyme of 'de novo' purine biosynthesis; contains both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities; ADE16 has a paralog, ADE17, that arose from the whole genome duplication; ade16 ade17 mutants require adenine and histidine; Belongs to the PurH family | AMP deaminase; tetrameric enzyme that catalyzes the deamination of AMP to form IMP and ammonia; thought to be involved in regulation of intracellular purine (adenine, guanine, and inosine) nucleotide pools | 0.959 |
ADE16 | GUA1 | YLR028C | YMR217W | Bifunctional purine biosynthesis protein ADE16; Enzyme of 'de novo' purine biosynthesis; contains both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities; ADE16 has a paralog, ADE17, that arose from the whole genome duplication; ade16 ade17 mutants require adenine and histidine; Belongs to the PurH family | GMP synthase; highly conserved enzyme that catalyzes the second step in the biosynthesis of GMP from inosine 5'-phosphate (IMP); transcription is not subject to regulation by guanine but is negatively regulated by nutrient starvation; reduction-of-function mutation gua1-G388D causes changes in cellular guanine nucleotide pools, defects in general protein synthesis, and impaired translation of GCN4 mRNA | 0.808 |
ADE16 | HAM1 | YLR028C | YJR069C | Bifunctional purine biosynthesis protein ADE16; Enzyme of 'de novo' purine biosynthesis; contains both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities; ADE16 has a paralog, ADE17, that arose from the whole genome duplication; ade16 ade17 mutants require adenine and histidine; Belongs to the PurH family | Inosine triphosphate pyrophosphatase; Nucleoside triphosphate pyrophosphohydrolase; active against various substrates including ITP, dITP and XTP; mediates exclusion of non canonical purines, pyrimidines from dNTP pools; functions with YJL055W to mediate resistance to 5-FU; specifically reduces the incorporation of 5-FU into RNA without affecting uptake or incorporation of uracil into RNA; protein abundance increases in response to DNA replication stress; yeast HAM1 can complement knockdown of human homolog ITPA | 0.961 |
ADE16 | HPT1 | YLR028C | YDR399W | Bifunctional purine biosynthesis protein ADE16; Enzyme of 'de novo' purine biosynthesis; contains both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities; ADE16 has a paralog, ADE17, that arose from the whole genome duplication; ade16 ade17 mutants require adenine and histidine; Belongs to the PurH family | Dimeric hypoxanthine-guanine phosphoribosyltransferase; catalyzes the transfer of the phosphoribosyl portion of 5-phosphoribosyl-alpha-1-pyrophosphate to a purine base (either guanine or hypoxanthine) to form pyrophosphate and a purine nucleotide (either guanosine monophosphate or inosine monophosphate); mutations in the human homolog HPRT1 can cause Lesch-Nyhan syndrome and Kelley-Seegmiller syndrome | 0.968 |
ADE16 | IMD2 | YLR028C | YHR216W | Bifunctional purine biosynthesis protein ADE16; Enzyme of 'de novo' purine biosynthesis; contains both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities; ADE16 has a paralog, ADE17, that arose from the whole genome duplication; ade16 ade17 mutants require adenine and histidine; Belongs to the PurH family | Inosine-5'-monophosphate dehydrogenase 2; Inosine monophosphate dehydrogenase; catalyzes the rate-limiting step in GTP biosynthesis, expression is induced by mycophenolic acid resulting in resistance to the drug, expression is repressed by nutrient limitation; IMD2 has a paralog, YAR073W/YAR075W, that arose from a segmental duplication | 0.931 |
ADE16 | IMD3 | YLR028C | YLR432W | Bifunctional purine biosynthesis protein ADE16; Enzyme of 'de novo' purine biosynthesis; contains both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities; ADE16 has a paralog, ADE17, that arose from the whole genome duplication; ade16 ade17 mutants require adenine and histidine; Belongs to the PurH family | Inosine-5'-monophosphate dehydrogenase 3; Inosine monophosphate dehydrogenase; catalyzes the rate-limiting step in the de novo synthesis of GTP; member of a four-gene family in S. cerevisiae, constitutively expressed; IMD3 has a paralog, IMD4, that arose from the whole genome duplication; Belongs to the IMPDH/GMPR family | 0.969 |
ADE16 | IMD4 | YLR028C | YML056C | Bifunctional purine biosynthesis protein ADE16; Enzyme of 'de novo' purine biosynthesis; contains both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities; ADE16 has a paralog, ADE17, that arose from the whole genome duplication; ade16 ade17 mutants require adenine and histidine; Belongs to the PurH family | Inosine-5'-monophosphate dehydrogenase 4; Inosine monophosphate dehydrogenase; catalyzes the rate-limiting step in the de novo synthesis of GTP; member of a four-gene family in S. cerevisiae, constitutively expressed; IMD4 has a paralog, IMD3, that arose from the whole genome duplication | 0.946 |
ADE17 | ADE12 | YMR120C | YNL220W | Bifunctional purine biosynthesis protein ADE17; Enzyme of 'de novo' purine biosynthesis; contains both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities; ADE17 has a paralog, ADE16, that arose from the whole genome duplication; ade16 ade17 mutants require adenine and histidine; Belongs to the PurH family | Adenylosuccinate synthase; catalyzes the first step in synthesis of adenosine monophosphate from inosine 5'monophosphate during purine nucleotide biosynthesis; exhibits binding to single-stranded autonomously replicating (ARS) core sequence | 0.997 |
ADE17 | ADE16 | YMR120C | YLR028C | Bifunctional purine biosynthesis protein ADE17; Enzyme of 'de novo' purine biosynthesis; contains both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities; ADE17 has a paralog, ADE16, that arose from the whole genome duplication; ade16 ade17 mutants require adenine and histidine; Belongs to the PurH family | Bifunctional purine biosynthesis protein ADE16; Enzyme of 'de novo' purine biosynthesis; contains both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities; ADE16 has a paralog, ADE17, that arose from the whole genome duplication; ade16 ade17 mutants require adenine and histidine; Belongs to the PurH family | 0.999 |