STRINGSTRING
NTE1 protein (Saccharomyces cerevisiae) - STRING interaction network
"NTE1" - Serine esterase, homolog of human neuropathy target esterase in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
NTE1Serine esterase, homolog of human neuropathy target esterase (NTE); Nte1p-mediated phosphatidylcholine turnover influences transcription factor Opi1p localization, affecting transcriptional regulation of phospholipid biosynthesis genes; Intracellular phospholipase B that catalyzes the double deacylation of phosphatidylcholine (PC) to glycerophosphocholine (GroPCho). Plays an important role in membrane lipid homeostasis. Responsible for the rapid PC turnover in response to inositol, elevated temperatures, or when choline is present in the growth medium (1679 aa)    
Predicted Functional Partners:
GDE1
Glycerophosphocholine (GroPCho) phosphodiesterase; hydrolyzes GroPCho to choline and glycerolphosphate, for use as a phosphate source and as a precursor for phosphocholine synthesis; may interact with ribosomes; Glycerophosphocholine glycerophosphodiesterase responsible for the hydrolysis of intracellular glycerophosphocholine into glycerol-phosphate and choline. The choline is used for phosphatidyl-choline synthesis. Required for utilization of glycerophosphocholine as phosphate source (1223 aa)
   
 
  0.970
ALE1
Broad-specificity lysophospholipid acyltransferase, part of MBOAT family of membrane-bound O-acyltransferases; key component of Lands cycle; may have role in fatty acid exchange at sn-2 position of mature glycerophospholipids; Membrane-bound O-acyltransferase that mediates the incorporation of unsaturated acyl chains into the sn-2 position of phospholipids. Preferentially acylates lysophosphocholine, but also lysophosphoethanolamine and lysophosphatidylglycerol (619 aa)
     
 
  0.967
CYR1
Adenylate cyclase, required for cAMP production and cAMP-dependent protein kinase signaling; the cAMP pathway controls a variety of cellular processes, including metabolism, cell cycle, stress response, stationary phase, and sporulation; Plays essential roles in regulation of cellular metabolism by catalyzing the synthesis of a second messenger, cAMP (2026 aa)
   
 
  0.962
TGL4
Multifunctional triacylglycerol lipase, steryl ester hydrolase, and Ca2+-independent phospholipase A2; catalyzes acyl-CoA dependent acylation of LPA to PA; required with Tgl3p for timely bud formation; phosphorylated and activated by Cdc28p; Releases specific fatty acids from neutral lipid triacylglycerols (TAG) thereby supplying fatty acids to a general acylation process. May have a specific role in sporulation (910 aa)
     
 
  0.956
CPT1
Cholinephosphotransferase, required for phosphatidylcholine biosynthesis and for inositol-dependent regulation of EPT1 transcription; Catalyzes the final step in the CDP-choline route leading to phosphatidylcholin (PC). Preferentially uses CDP- monomethylethanolamine as aminoalcohol substrate. Shows highest activity toward di- and mono-unsaturated diacylglycerol species as lipid substrates. The CDP-choline pathway only contributes to net PC synthesis if exogenous choline is present. In its absence, this pathway recycles choline from PC turnover and may contribute to maintaining the pro [...] (393 aa)
     
 
  0.949
EPT1
Sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferase; not essential for viability; Catalyzes the final step in the CDP-ethanolamine route leading to phosphatidylethanolamine (PE). Can also catalyze the formation of phosphatidylcholine (PC) from CDP-choline, but does not substantially contribute to PC biosynthesis. Preferentially uses CDP-dimethylethanolamine and CDP-propanolamine as aminoalcohol substrates. Shows highest activity toward di- unsaturated diacylglycerol species as lipid substrates. The CDP- ethanolamine pathway may play a role in maintaining the proper PE spec [...] (391 aa)
     
 
  0.941
TPK2
cAMP-dependent protein kinase catalytic subunit; promotes vegetative growth in response to nutrients via the Ras-cAMP signaling pathway; partially redundant with Tpk1p and Tpk3p; localizes to P-bodies during stationary phase (380 aa)
     
  0.926
TPK3
cAMP-dependent protein kinase catalytic subunit; promotes vegetative growth in response to nutrients via the Ras-cAMP signaling pathway; partially redundant with Tpk1p and Tpk2p; localizes to P-bodies during stationary phase (398 aa)
     
  0.926
TPK1
cAMP-dependent protein kinase catalytic subunit; promotes vegetative growth in response to nutrients via the Ras-cAMP signaling pathway; inhibited by regulatory subunit Bcy1p in the absence of cAMP; partially redundant with Tpk2p and Tpk3p (397 aa)
     
  0.926
RPO26
RNA polymerase subunit ABC23, common to RNA polymerases I, II, and III; part of central core; similar to bacterial omega subunit; DNA-dependent RNA polymerases catalyze the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. RNA polymerases are composed of mobile [...] (155 aa)
       
 
  0.924
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (13%) [HD]