STRINGSTRING
ERG13 protein (Saccharomyces cerevisiae) - STRING interaction network
"ERG13" - 3-hydroxy-3-methylglutaryl-CoA in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ERG133-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase, catalyzes the formation of HMG-CoA from acetyl-CoA and acetoacetyl-CoA; involved in the second step in mevalonate biosynthesis; This enzyme condenses acetyl-CoA with acetoacetyl-CoA to form HMG-CoA, which is the substrate for HMG-CoA reductase (491 aa)    
Predicted Functional Partners:
ERG10
Acetyl-CoA C-acetyltransferase (acetoacetyl-CoA thiolase), cytosolic enzyme that transfers an acetyl group from one acetyl-CoA molecule to another, forming acetoacetyl-CoA; involved in the first step in mevalonate biosynthesis; Catalyzes the formation of acetoacetyl-CoA in the biosynthesis of mevalonate, an intermediate required for the biosynthesis of sterols and nonsterol isoprenoids (398 aa)
   
  0.999
POT1
3-ketoacyl-CoA thiolase with broad chain length specificity, cleaves 3-ketoacyl-CoA into acyl-CoA and acetyl-CoA during beta-oxidation of fatty acids (417 aa)
   
  0.998
MVD1
Mevalonate pyrophosphate decarboxylase, essential enzyme involved in the biosynthesis of isoprenoids and sterols, including ergosterol; acts as a homodimer (396 aa)
 
 
  0.995
HMG1
One of two isozymes of HMG-CoA reductase that catalyzes the conversion of HMG-CoA to mevalonate, which is a rate-limiting step in sterol biosynthesis; localizes to the nuclear envelope; overproduction induces the formation of karmellae; One of 2 isozymes that catalyze the conversion of HMG- CoA to mevalonate. It is the rate-limiting enzyme of the sterol biosynthesis pathway. Involved in ergosterol biosynthesis (1054 aa)
   
 
  0.994
HMG2
One of two isozymes of HMG-CoA reductase that convert HMG-CoA to mevalonate, a rate-limiting step in sterol biosynthesis; overproduction induces assembly of peripheral ER membrane arrays and short nuclear-associated membrane stacks; One of 2 isozymes that catalyze the conversion of HMG- CoA to mevalonate. It is the rate-limiting enzyme of the sterol biosynthesis pathway. Involved in ergosterol biosynthesis (1045 aa)
   
 
  0.992
ERG12
Mevalonate kinase, acts in the biosynthesis of isoprenoids and sterols, including ergosterol, from mevalonate; May contribute to the regulation of the isoprenoid and sterol pathway in living cells (443 aa)
 
   
  0.954
ERG1
Squalene epoxidase, catalyzes the epoxidation of squalene to 2,3-oxidosqualene; plays an essential role in the ergosterol-biosynthesis pathway and is the specific target of the antifungal drug terbinafine; Catalyzes the first oxygenation step in sterol biosynthesis and is suggested to be one of the rate-limiting enzymes in this pathway (496 aa)
     
   
  0.887
ERG9
Farnesyl-diphosphate farnesyl transferase (squalene synthase), joins two farnesyl pyrophosphate moieties to form squalene in the sterol biosynthesis pathway; Catalyzes the condensation of 2 two farnesyl pyrophosphate moieties to form squalene. It is the first committed enzyme of the sterol biosynthesis pathway. Required for the biosynthesis of ergosterol. May also have a regulatory role regulating the flux of isoprene intermediates through the sterol pathway. Squalene synthase is crucial for balancing the incorporation of farnesyl diphosphate (FPP) into sterol and nonsterol isoprene sy [...] (444 aa)
     
 
  0.880
ERG20
Farnesyl pyrophosphate synthetase, has both dimethylallyltranstransferase and geranyltranstransferase activities; catalyzes the formation of C15 farnesyl pyrophosphate units for isoprenoid and sterol biosynthesis; Catalyzes the sequential condensation of isopentenyl pyrophosphate with the allylic pyrophosphates, dimethylallyl pyrophosphate, and then with the resultant geranylpyrophosphate to the ultimate product farnesyl pyrophosphate (352 aa)
   
 
  0.878
ERG25
C-4 methyl sterol oxidase, catalyzes the first of three steps required to remove two C-4 methyl groups from an intermediate in ergosterol biosynthesis; mutants accumulate the sterol intermediate 4,4-dimethylzymosterol; Catalyzes the first step in the removal of the two C-4 methyl groups of 4,4-dimethylzymosterol (309 aa)
     
   
  0.877
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (6%) [HD]