STRINGSTRING
FMS1 protein (Saccharomyces cerevisiae) - STRING interaction network
"FMS1" - Polyamine oxidase, converts spermine to spermidine, which is required for the essential hypusination modification of translation factor eIF-5A in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
FMS1Polyamine oxidase, converts spermine to spermidine, which is required for the essential hypusination modification of translation factor eIF-5A; also involved in pantothenic acid biosynthesis; Involved in the production of beta-alanine, a precursor of pantothenic acid. Multicopy suppressor of fenpropimorph resistance (508 aa)    
Predicted Functional Partners:
SPE3
Spermidine synthase, involved in biosynthesis of spermidine and also in biosynthesis of pantothenic acid; spermidine is required for growth of wild-type cells (293 aa)
       
  0.968
SPE1
Ornithine decarboxylase, catalyzes the first step in polyamine biosynthesis; degraded in a proteasome-dependent manner in the presence of excess polyamines; deletion decreases lifespan, and increases necrotic cell death and ROS generation (466 aa)
         
  0.949
SPE4
Spermine synthase, required for the biosynthesis of spermine and also involved in biosynthesis of pantothenic acid (300 aa)
         
  0.949
ALD2
Cytoplasmic aldehyde dehydrogenase, involved in ethanol oxidation and beta-alanine biosynthesis; uses NAD+ as the preferred coenzyme; expression is stress induced and glucose repressed; very similar to Ald3p; Cytoplasmic aldehyde dehydrogenase involved in ethanol oxidation. Required for pantothenic acid production through the conversion of 3-aminopropanal to beta-alanine, an intermediate in pantothenic acid (vitamin B5) and coenzyme A (CoA) biosynthesis (506 aa)
         
  0.926
ALD5
Mitochondrial aldehyde dehydrogenase, involved in regulation or biosynthesis of electron transport chain components and acetate formation; activated by K+; utilizes NADP+ as the preferred coenzyme; constitutively expressed; Minor mitochondrial aldehyde dehydrogenase isoform. Plays a role in regulation or biosynthesis of electron transport chain components. Involved in the biosynthesis of acetate during anaerobic growth on glucose (520 aa)
         
  0.923
HFD1
Putative fatty aldehyde dehydrogenase, located in the mitochondrial outer membrane and also in lipid particles; has similarity to human fatty aldehyde dehydrogenase (FALDH) which is implicated in Sjogren-Larsson syndrome; Catalyzes the oxidation of long-chain aliphatic aldehydes to fatty acids. Responsible for conversion of the sphingosine 1-phosphate (S1P) degradation product hexadecenal to hexadecenoic acid (532 aa)
         
  0.912
ALD3
Cytoplasmic aldehyde dehydrogenase, involved in beta-alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; Cytoplasmic aldehyde dehydrogenase involved in ethanol oxidation. Involved in pantothenic acid production through the conversion of 3-aminopropanal to beta-alanine, an intermediate in pantothenic acid (vitamin B5) and coenzyme A (CoA) biosynthesis (506 aa)
         
  0.908
ALD6
Cytosolic aldehyde dehydrogenase, activated by Mg2+ and utilizes NADP+ as the preferred coenzyme; required for conversion of acetaldehyde to acetate; constitutively expressed; locates to the mitochondrial outer surface upon oxidative stress; Cytosolic aldehyde dehydrogenase which utilizes NADP+ as the preferred coenzyme. Performs the conversion of acetaldehyde to acetate (500 aa)
         
  0.902
ALD4
Mitochondrial aldehyde dehydrogenase, required for growth on ethanol and conversion of acetaldehyde to acetate; phosphorylated; activity is K+ dependent; utilizes NADP+ or NAD+ equally as coenzymes; expression is glucose repressed; Potassium-activated aldehyde dehydrogenase involved in acetate formation during anaerobic growth on glucose (519 aa)
         
    0.900
VPS75
NAP family histone chaperone; binds to histones and Rtt109p, stimulating histone acetyltransferase activity; possesses nucleosome assembly activity in vitro; proposed role in vacuolar protein sorting and in double-strand break repair; Histone chaperone which acts as a cofactor stimulating the histone H3 ’Lys-56’ acetylation by RTT109. May be involved in vacuolar proteins sorting (264 aa)
       
      0.699
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (4%) [HD]