STRINGSTRING
PSO2 protein (Saccharomyces cerevisiae) - STRING interaction network
"PSO2" - Nuclease required for a post-incision step in the repair of DNA single and double-strand breaks that result from interstrand crosslinks produced by a variety of mono- and bi-functional psoralen derivatives in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
PSO2Nuclease required for a post-incision step in the repair of DNA single and double-strand breaks that result from interstrand crosslinks produced by a variety of mono- and bi-functional psoralen derivatives; induced by UV-irradiation; Required for DNA interstrand cross-link repair. This requires cleavage of cross-linked DNA to generate DNA double strand breaks (DSBs). This protein has 5’ exonuclease activity on single-stranded and double-stranded DNA, which appears to be necessary for the processing of DNA double strand breaks prior to ligation (661 aa)    
Predicted Functional Partners:
YKU70
Subunit of the telomeric Ku complex (Yku70p-Yku80p), involved in telomere length maintenance, structure and telomere position effect; relocates to sites of double-strand cleavage to promote nonhomologous end joining during DSB repair; Single-stranded DNA-dependent ATP-dependent helicase. Involved in non-homologous end joining (NHEJ) DNA double strand break repair. DNA-binding is sequence-independent but has a high affinity to nicks in double-stranded DNA and to the ends of duplex DNA. Binds to naturally occurring chromosomal ends, and therefore provides chromosomal end protection. Appe [...] (602 aa)
     
  0.985
CFT1
RNA-binding subunit of the mRNA cleavage and polyadenylation factor; involved in poly(A) site recognition and required for both pre-mRNA cleavage and polyadenylation, 51% sequence similarity with mammalian AAUAA-binding subunit of CPSF; RNA-binding component of the cleavage and polyadenylation factor (CPF) complex, which plays a key role in polyadenylation-dependent pre-mRNA 3’-end formation and cooperates with cleavage factors including the CFIA complex and NAB4/CFIB. Involved in poly(A) site recognition. May be involved in coupling transcription termination and mRNA 3’-end formation (1357 aa)
     
  0.942
MEC1
Genome integrity checkpoint protein and PI kinase superfamily member; signal transducer required for cell cycle arrest and transcriptional responses prompted by damaged or unreplicated DNA; monitors and participates in meiotic recombination; Serine/threonine protein kinase which activates checkpoint signaling upon genotoxic stresses such as ionizing radiation (IR), ultraviolet light (UV), or DNA replication stalling, thereby acting as a DNA damage sensor. Recognizes the substrate consensus sequence [ST]-Q. Recruited in complex with protein LCD1 by the single-strand-binding protein comp [...] (2368 aa)
     
  0.941
REV3
Catalytic subunit of DNA polymerase zeta, involved in translesion synthesis during post-replication repair; required for mutagenesis induced by DNA damage; involved in double-strand break repair; Nonessential DNA polymerase. Required for DNA damage induced mutagenesis. Involved in DNA repair, mitochondrial DNA repair and translesion synthesis. Translesion synthesis in S.cerevisiae may use a specialized DNA polymerase that is not required for other DNA replicative processes. Has a role in the bypass of abasic (AP) sites. Highly inefficient in incorporating nucleotides opposite the AP si [...] (1504 aa)
     
 
  0.915
MRE11
Subunit of a complex with Rad50p and Xrs2p (MRX complex) that functions in repair of DNA double-strand breaks and in telomere stability, exhibits nuclease activity that appears to be required for MRX function; widely conserved; Involved in DNA double-strand break repair (DSBR). Possesses single-strand endonuclease activity and double-strand- specific 3’-5’ exonuclease activity. Also involved in meiotic DSB processing (692 aa)
     
  0.903
YTH1
Essential RNA-binding component of cleavage and polyadenylation factor, contains five zinc fingers; required for pre-mRNA 3’-end processing and polyadenylation; RNA-binding component of the cleavage and polyadenylation factor (CPF) complex, which plays a key role in polyadenylation-dependent pre-mRNA 3’-end formation and cooperates with cleavage factors including the CFIA complex and NAB4/CFIB (208 aa)
     
  0.901
LEE1
Zinc-finger protein of unknown function (301 aa)
     
  0.897
DNL4
DNA ligase required for nonhomologous end-joining (NHEJ), forms stable heterodimer with required cofactor Lif1p, interacts with Nej1p; involved in meiosis, not essential for vegetative growth; Has minor DNA joining activity. Can act on oligo(PDT)/poly(rA) substrate (944 aa)
   
  0.887
RAD3
5’ to 3’ DNA helicase, involved in nucleotide excision repair and transcription; subunit of RNA polII initiation factor TFIIH and of Nucleotide Excision Repair Factor 3 (NEF3); homolog of human XPD protein; mutant has aneuploidy tolerance; ATP-dependent DNA helicase involved in excision repair of DNA damaged with UV light, bulky adducts, or cross-linking agents. Necessary for excision of pyrimidine dimers. Also unwinds DNA/RNA duplexes. Plays an essential role in the cell viability. Involved in the maintenance of the fidelity of DNA replication. Acts as component of the general transcr [...] (778 aa)
     
 
  0.857
YKU80
Subunit of the telomeric Ku complex (Yku70p-Yku80p), involved in telomere length maintenance, structure and telomere position effect; relocates to sites of double-strand cleavage to promote nonhomologous end joining during DSB repair; Single-stranded DNA-dependent ATP-dependent helicase. Involved in non-homologous end joining (NHEJ) DNA double strand break repair. DNA-binding is sequence-independent but has a high affinity to nicks in double-stranded DNA and to the ends of duplex DNA. Binds to naturally occurring chromosomal ends, and therefore provides chromosomal end protection. Appe [...] (629 aa)
     
  0.856
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (3%) [HD]