STRINGSTRING
ALD3 protein (Saccharomyces cerevisiae) - STRING interaction network
"ALD3" - Cytoplasmic aldehyde dehydrogenase, involved in beta-alanine synthesis in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ALD3Cytoplasmic aldehyde dehydrogenase, involved in beta-alanine synthesis; uses NAD+ as the preferred coenzyme; very similar to Ald2p; expression is induced by stress and repressed by glucose; Cytoplasmic aldehyde dehydrogenase involved in ethanol oxidation. Involved in pantothenic acid production through the conversion of 3-aminopropanal to beta-alanine, an intermediate in pantothenic acid (vitamin B5) and coenzyme A (CoA) biosynthesis (506 aa)    
Predicted Functional Partners:
CTT1
Cytosolic catalase T, has a role in protection from oxidative damage by hydrogen peroxide; Occurs in almost all aerobically respiring organisms and serves to protect cells from the toxic effects of hydrogen peroxide (562 aa)
     
  0.999
GAD1
Glutamate decarboxylase, converts glutamate into gamma-aminobutyric acid (GABA) during glutamate catabolism; involved in response to oxidative stress (585 aa)
     
 
  0.997
TKL2
Transketolase, similar to Tkl1p; catalyzes conversion of xylulose-5-phosphate and ribose-5-phosphate to sedoheptulose-7-phosphate and glyceraldehyde-3-phosphate in the pentose phosphate pathway; needed for synthesis of aromatic amino acids; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate (681 aa)
   
  0.994
ACS1
Acetyl-coA synthetase isoform which, along with Acs2p, is the nuclear source of acetyl-coA for histone acetylation; expressed during growth on nonfermentable carbon sources and under aerobic conditions; Catalyzes the production of acetyl-CoA. Provides the acetyl-CoA source for histone acetylation in the nucleus. "Aerobic" isozyme of acetyl-coenzyme A synthetase, which supports growth on nonfermentable carbon sources such as glycerol and ethanol. May be required for assimilation of ethanol and acetate (713 aa)
   
 
  0.991
ADH2
Glucose-repressible alcohol dehydrogenase II, catalyzes the conversion of ethanol to acetaldehyde; involved in the production of certain carboxylate esters; regulated by ADR1; This isozyme preferentially catalyzes the conversion of ethanol to acetaldehyde. Acts on a variety of primary unbranched aliphatic alcohols (348 aa)
   
 
  0.989
ACS2
Acetyl-coA synthetase isoform which, along with Acs1p, is the nuclear source of acetyl-coA for histone acetylation; mutants affect global transcription; required for growth on glucose; expressed under anaerobic conditions; Catalyzes the production of acetyl-CoA. Provides the acetyl-CoA source for histone acetylation in the nucleus. "Anaerobic" isozyme of acetyl-coenzyme A synthetase, which is required for growth on fermentable carbon sources such as glucose. May be involved in the PDH (pyruvate dehydrogenase complex) bypass (683 aa)
   
 
  0.986
UGA1
Gamma-aminobutyrate (GABA) transaminase (4-aminobutyrate aminotransferase) involved in the 4-aminobutyrate and glutamate degradation pathways; required for normal oxidative stress tolerance and nitrogen utilization; Required for the degradation of gamma-aminobutyric acid (GABA), which is important for utilization of GABA as nitrogen source and for oxidative stress tolerance. Deaminates GABA to succinate semialdehyde, which in turn is converted to succinate by the succinate-semialdehyde dehydrogenase UGA2. Cannot transaminate beta-alanine (BAL) (471 aa)
 
  0.986
MSC1
Protein of unknown function; mutant is defective in directing meiotic recombination events to homologous chromatids; the authentic, non-tagged protein is detected in highly purified mitochondria and is phosphorylated (513 aa)
     
   
  0.986
ADH4
Alcohol dehydrogenase isoenzyme type IV, dimeric enzyme demonstrated to be zinc-dependent despite sequence similarity to iron-activated alcohol dehydrogenases; transcription is induced in response to zinc deficiency; Reduces acetaldehyde to ethanol during glucose fermentation. Specific for ethanol. Shows drastically reduced activity towards primary alcohols from 4 carbon atoms upward. Isomers of aliphatic alcohol, as well as secondary alcohols and glycerol are not used at all (382 aa)
 
 
  0.985
ADH1
Alcohol dehydrogenase, fermentative isozyme active as homo- or heterotetramers; required for the reduction of acetaldehyde to ethanol, the last step in the glycolytic pathway; This isozyme preferentially catalyzes the conversion of primary unbranched alcohols to their corresponding aldehydes. Also also shows activity toward secondary alcohols (348 aa)
   
 
  0.984
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (2%) [HD]