STRINGSTRING
GUA1 protein (Saccharomyces cerevisiae) - STRING interaction network
"GUA1" - GMP synthase in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
GUA1GMP synthase; highly conserved enzyme that catalyzes the second step in the biosynthesis of GMP from inosine 5’-phosphate (IMP); transcription is not subject to regulation by guanine but is negatively regulated by nutrient starvation; reduction-of-f /.../n mutation gua1-G388D causes changes in cellular guanine nucleotide pools, defects in general protein synthesis, and impaired translation of GCN4 mRNA (525 aa)    
Predicted Functional Partners:
IMD4
Inosine monophosphate dehydrogenase, catalyzes the first step of GMP biosynthesis, member of a four-gene family in S. cerevisiae, constitutively expressed; Catalyzes the conversion of inosine 5’-phosphate (IMP) to xanthosine 5’-phosphate (XMP), the first committed and rate- limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth (524 aa)
 
  0.999
IMD3
Inosine monophosphate dehydrogenase, catalyzes the first step of GMP biosynthesis, member of a four-gene family in S. cerevisiae, constitutively expressed; Catalyzes the conversion of inosine 5’-phosphate (IMP) to xanthosine 5’-phosphate (XMP), the first committed and rate- limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth (523 aa)
 
  0.999
IMD2
Inosine monophosphate dehydrogenase, catalyzes the rate-limiting step in GTP biosynthesis, expression is induced by mycophenolic acid resulting in resistance to the drug, expression is repressed by nutrient limitatio; Catalyzes the conversion of inosine 5’-phosphate (IMP) to xanthosine 5’-phosphate (XMP), the first committed and rate- limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. In contrast to the other IMPDH alleles IMD3 and IMD4, the enzymatic activity of IMD2 seems to be intrinsically drug resistant (523 aa)
 
  0.999
URA7
Major CTP synthase isozyme (see also URA8), catalyzes the ATP-dependent transfer of the amide nitrogen from glutamine to UTP, forming CTP, the final step in de novo biosynthesis of pyrimidines; involved in phospholipid biosynthesis; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen (579 aa)
   
 
  0.999
IMD1
Nonfunctional protein with homology to IMP dehydrogenase; probable pseudogene, located close to the telomere; is not expressed at detectable levels; YAR073W and YAR075W comprise a continuous reading frame in some strains of S. cerevisiae (403 aa)
 
  0.999
CYS4
Cystathionine beta-synthase, catalyzes synthesis of cystathionine from serine and homocysteine, the first committed step in cysteine biosynthesis; responsible for hydrogen sulfide generation; mutations in human ortholog cause homocystinuria (507 aa)
   
  0.999
YAR075W
Non-functional protein with homology IMP dehydrogenase; YAR073W/IMD1 and YAR075W comprise a continuous reading frame in some strains of S. cerevisiae (157 aa)
   
  0.999
GEF1
Voltage-gated chloride channel localized to the golgi, the endosomal system, and plasma membrane, and involved in cation homeostasis; highly homologous to vertebrate voltage-gated chloride channels; Anion/proton exchange transporter involved in iron and copper cation homeostasis. Involved in intracellular iron metabolism during growth on fermentable and non fermentable carbon sources. Required for proper copper-loading and maturation of multicopper oxidase FET3. Important for adjusting intracellular compartment pH to more alkaline pH under iron limitation. May also transport chloride i [...] (779 aa)
   
  0.999
SNF4
Activating gamma subunit of the AMP-activated Snf1p kinase complex (contains Snf1p and a Sip1p/Sip2p/Gal83p family member); activates glucose-repressed genes, represses glucose-induced genes; role in sporulation, and peroxisome biogenesis; Adenine nucleotides-binding subunit gamma of AMP- activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes- inhibits protein, carbohydrate and li [...] (322 aa)
   
  0.999
SDS23
One of two S. cerevisiae homologs (Sds23p and Sds24p) of the S. pombe Sds23 protein, which is implicated in APC/cyclosome regulation; involved in cell separation during budding; Involved in DNA replication and cell separation during budding (527 aa)
   
  0.999
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (4%) [HD]