STRINGSTRING
RNT1 protein (Saccharomyces cerevisiae) - STRING interaction network
"RNT1" - RNAase III in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
RNT1RNAase III; involved in rDNA transcription and rRNA processing; also cleaves a stem-loop structure at the 3’ end of U2 snRNA to ensure formation of the correct U2 3’ end; involved in polyadenylation-independent transcription termination; DsRNA-specific nuclease that cleaves eukaryotic pre- ribosomal RNA at the U3 snoRNP-dependent A0 site in the 5’- external transcribed spacer (ETS) and in the 3’-ETS. In vitro, cleaves synthetic 5’-ETS RNA A0 site in the absence of snoRNA or other factors. Has an essential growth function in addition to pre-rRNA processing (471 aa)    
Predicted Functional Partners:
DHR2
Predominantly nucleolar DEAH-box ATP-dependent RNA helicase, required for 18S rRNA synthesis; Probable ATP-binding RNA helicase. Required for 18S rRNA synthesis (735 aa)
     
 
  0.970
REX4
Putative RNA exonuclease possibly involved in pre-rRNA processing and ribosome assembly; Exoribonuclease involved in ribosome biosynthesis. Involved in the processing of ITS1, the internal transcribed spacer localized between the 18S and 5.8S rRNAs (289 aa)
     
   
  0.965
NOP4
Nucleolar protein, essential for processing and maturation of 27S pre-rRNA and large ribosomal subunit biogenesis; constituent of 66S pre-ribosomal particles; contains four RNA recognition motifs (RRMs); Required for 60S ribosomal subunit synthesis. Probably involved in the processing of 27S rRNA to produce mature 25S rRNA (685 aa)
     
   
  0.964
DBP3
Putative ATP-dependent RNA helicase of the DEAD-box family involved in ribosomal biogenesis; ATP-dependent RNA helicase required for 60S ribosomal subunit synthesis. Involved in efficient pre-rRNA processing, predominantly at site A3, which is necessary for the normal formation of 25S and 5.8S rRNAs (523 aa)
     
 
  0.963
HCA4
Putative nucleolar DEAD box RNA helicase; high-copy number suppression of a U14 snoRNA processing mutant suggests an involvement in 18S rRNA synthesis; ATP-dependent RNA helicase required for ribosome biogenesis. Involved in the release of U14 snoRNA in pre-ribosomal complexes. Required for pre-rRNA cleavage at site A2 (770 aa)
     
 
  0.962
ROK1
ATP-dependent RNA helicase of the DEAD box family; required for 18S rRNA synthesis; ATP-dependent RNA helicase involved in 40S ribosomal subunit biogenesis. Required for the processing and cleavage of 35S pre-rRNA at sites A0, A1, and A2, leading to mature 18S rRNA. May also have a gene-specific regulatory function since it affects nuclear fusion by regulating KAR4 expression and contributes with KEM1 to ISP-1 sensitivity (564 aa)
     
   
  0.961
DBP8
ATPase, putative RNA helicase of the DEAD-box family; component of 90S preribosome complex involved in production of 18S rRNA and assembly of 40S small ribosomal subunit; ATPase activity stimulated by association with Esf2p; ATP-binding RNA helicase involved in 40S ribosomal subunit biogenesis and is required for the normal formation of 18S rRNAs through pre-rRNA processing at A0, A1 and A2 sites. Required for vegetative growth (431 aa)
     
   
  0.960
SOF1
Essential protein required for biogenesis of 40S (small) ribosomal subunit; has similarity to the beta subunit of trimeric G-proteins and the splicing factor Prp4p; Required for ribosomal RNA processing (489 aa)
     
   
  0.958
RRP12
Protein required for export of the ribosomal subunits; associates with the RNA components of the pre-ribosomes; has a role in nuclear import in association with Pse1p; contains HEAT-repeats; In association with GSP1, required for nuclear export of both pre-40S and pre-60S ribosomal subunits. Required for the late maturation of the 18S and 5.8S rRNA of the pre-40S ribosomes and for maturation of the 25S and 5.8S rRNA of the pre-60S ribosomes (1228 aa)
     
   
  0.956
MAK5
Essential nucleolar protein, putative DEAD-box RNA helicase required for maintenance of M1 dsRNA virus; involved in biogenesis of large (60S) ribosomal subunits; ATP-binding RNA helicase involved in the biogenesis of 60S ribosomal subunits and is required for the normal formation of 25S and 5.8S rRNAs. Required for the maintenance of dsRNA killer plasmid (773 aa)
     
   
  0.955
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (3%) [HD]