STRINGSTRING
SCS7 protein (Saccharomyces cerevisiae) - STRING interaction network
"SCS7" - Sphingolipid alpha-hydroxylase, functions in the alpha-hydroxylation of sphingolipid-associated very long chain fatty acids, has both cytochrome b5-like and hydroxylase/desaturase domains, not essential for growth in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SCS7Sphingolipid alpha-hydroxylase, functions in the alpha-hydroxylation of sphingolipid-associated very long chain fatty acids, has both cytochrome b5-like and hydroxylase/desaturase domains, not essential for growth; Ceramide hydroxylase involved in the alpha-hydroxylation of sphingolipid-associated very long chain fatty acids. Hydroxylates the very long chain fatty acid of ceramides at C2 and C3 (384 aa)    
Predicted Functional Partners:
AUR1
Phosphatidylinositol-ceramide phosphoinositol transferase (IPC synthase), required for sphingolipid synthesis; can mutate to confer aureobasidin A resistance; Catalytic component of the inositol phosphorylceramide synthase which catalyzes the addition of a phosphorylinositol group onto ceramide to form inositol phosphorylceramide, an essential step in sphingolipid biosynthesis (401 aa)
     
  0.990
LAG1
Ceramide synthase component, involved in synthesis of ceramide from C26(acyl)-coenzyme A and dihydrosphingosine or phytosphingosine, functionally equivalent to Lac1p; Component of the ceramide synthase complex required for C26-CoA-dependent ceramide synthesis. Redundant with LAC1. Facilitates ER-to-Golgi transport of GPI-anchored proteins. Involved in the aging process. Deletion of LAG1 results in a pronounced increase (approximately 50%) in mean and in maximum life span (411 aa)
     
  0.969
LAC1
Ceramide synthase component, involved in synthesis of ceramide from C26(acyl)-coenzyme A and dihydrosphingosine or phytosphingosine, functionally equivalent to Lag1p; Component of the ceramide synthase complex required for C26-CoA-dependent ceramide synthesis. Redundant with LAG1. Facilitates ER-to-Golgi transport of GPI-anchored proteins (418 aa)
     
  0.969
SUR2
Sphinganine C4-hydroxylase, catalyses the conversion of sphinganine to phytosphingosine in sphingolipid biosyntheis; Required for hydroxylation of C-4 in the sphingoid moiety of ceramide. Involved in the response to syringomycin (349 aa)
     
 
  0.957
LIP1
Ceramide synthase subunit; single-span ER membrane protein associated with Lag1p and Lac1p and required for ceramide synthase activity, null mutant grows extremely slowly and is defective in ceramide synthesis; Component of the ceramide synthase complex required for synthesis of ceramides (150 aa)
         
  0.939
LCB1
Component of serine palmitoyltransferase, responsible along with Lcb2p for the first committed step in sphingolipid synthesis, which is the condensation of serine with palmitoyl-CoA to form 3-ketosphinganine; Component of serine palmitoyltransferase (SPT), which catalyzes the committed step in the synthesis of sphingolipids, the condensation of serine with palmitoyl CoA to form the long chain base 3-ketosphinganine (558 aa)
       
 
  0.908
SUR1
Probable catalytic subunit of a mannosylinositol phosphorylceramide (MIPC) synthase, forms a complex with probable regulatory subunit Csg2p; function in sphingolipid biosynthesis is overlapping with that of Csh1p; Involved in the synthesis of mannosyl phosphorylinositol ceramide. Catalyzes the addition of mannosyl to phosphorylinositol ceramide. Suppressor of RVS161 mutation (382 aa)
       
 
  0.907
CSG2
Endoplasmic reticulum membrane protein, required for mannosylation of inositolphosphorylceramide and for growth at high calcium concentrations; Required for calcium regulation. May regulate calcium accumulation by a non-vacuole organelle. Also regulates the activity of CSH1 and SUR1 during mannosyl phosphorylinositol ceramide synthesis (410 aa)
       
 
  0.889
OLE1
Delta(9) fatty acid desaturase, required for monounsaturated fatty acid synthesis and for normal distribution of mitochondria; Stearyl-CoA desaturase that utilizes O(2) and electrons from reduced cytochrome b5 to introduce the first double bond into saturated fatty acyl-CoA substrates (PubMed-1978720, PubMed-7947684). Catalyzes the insertion of a cis double bond at the delta-9 position into fatty acyl-CoA substrates including palmitoyl-CoA and stearoyl-CoA (PubMed-1978720). Required for the biosynthesis of membrane phospholipids, cholesterol esters and triglycerides (PubMed-1978720, Pu [...] (510 aa)
     
 
  0.872
CSH1
Probable catalytic subunit of a mannosylinositol phosphorylceramide (MIPC) synthase, forms a complex with probable regulatory subunit Csg2p; function in sphingolipid biosynthesis is overlapping with that of Sur1p; Involved in the synthesis of mannosyl phosphorylinositol ceramide. Catalyzes the addition of mannosyl to phosphorylinositol ceramide (376 aa)
       
 
  0.856
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (4%) [HD]