STRINGSTRING
FET4 protein (Saccharomyces cerevisiae) - STRING interaction network
"FET4" - Low-affinity Fe(II) transporter of the plasma membrane in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
FET4Low-affinity Fe(II) transporter of the plasma membrane; Required for Fe(2+) ion low affinity uptake (552 aa)    
Predicted Functional Partners:
FET3
Ferro-O2-oxidoreductase required for high-affinity iron uptake and involved in mediating resistance to copper ion toxicity, belongs to class of integral membrane multicopper oxidases; Iron transport multicopper ferroxidase required for Fe(2+) ion high affinity uptake. Required to oxidize Fe(2+) and release it from the transporter. Essential component of copper- dependent iron transport (636 aa)
       
 
  0.978
FTR1
High affinity iron permease involved in the transport of iron across the plasma membrane; forms complex with Fet3p; expression is regulated by iron; Permease for high affinity iron uptake (404 aa)
       
 
  0.924
FET5
Multicopper oxidase, integral membrane protein with similarity to Fet3p; may have a role in iron transport; Iron transport multicopper oxidase, which is required for Fe(2+) high affinity uptake. May be required to oxidize Fe(2+) and release it from the transporter. Essential component of copper-dependent iron transport (622 aa)
       
 
  0.905
AFT1
Transcription factor involved in iron utilization and homeostasis; binds the consensus site PyPuCACCCPu and activates the expression of target genes in response to changes in iron availability; Probable transcription factor that activates the genes for FRE1, FRE2 and FET3 in response to iron deprivation. Iron could interact directly with AFT1 and inhibits its activity (690 aa)
       
 
  0.877
ZRT1
High-affinity zinc transporter of the plasma membrane, responsible for the majority of zinc uptake; transcription is induced under low-zinc conditions by the Zap1p transcription factor; High-affinity zinc transport protein (376 aa)
           
  0.865
ZRT2
Low-affinity zinc transporter of the plasma membrane; transcription is induced under low-zinc conditions by the Zap1p transcription factor; Low-affinity zinc transport protein. Active in zinc- replete cells and is time-, temperature- and concentration- dependent and prefers zinc over other metals as its substrate (422 aa)
           
  0.817
SMF1
Divalent metal ion transporter; broad specificity for di-valent and tri-valent metals; post-translationally regulated by levels of metal ions; member of the Nramp family of metal transport proteins; High-affinity manganese transporter involved in manganese uptake from the extracellular environment. Contributes also to cellular accumulation of other divalent metal ions such as cadmium, cobalt, copper, iron and nickel (575 aa)
           
  0.803
FRE1
Ferric reductase and cupric reductase, reduces siderophore-bound iron and oxidized copper prior to uptake by transporters; expression induced by low copper and iron levels; Metalloreductase responsible for reducing extracellular iron and copper prior to import. Catalyzes the reductive uptake of Fe(3+)-salts and Fe(3+) bound to catecholate or hydroxamate siderophores. Fe(3+) is reduced to Fe(2+), which then dissociates from the siderophore and can be imported by the high-affinity Fe(2+) transport complex in the plasma membrane. Also participates in Cu(2+) reduction and Cu(+) uptake (686 aa)
           
  0.761
CCC2
Cu(+2)-transporting P-type ATPase, required for export of copper from the cytosol into an extracytosolic compartment; has similarity to human proteins involved in Menkes and Wilsons diseases; Probably involved in copper transport and in the regulation of cellular copper level. Retrieves copper from the metallochaperone ATX1 and incorporates it into trans-Golgi vesicles (1004 aa)
       
 
  0.761
ZRT3
Vacuolar membrane zinc transporter, transports zinc from storage in the vacuole to the cytoplasm when needed; transcription is induced under conditions of zinc deficiency; Transports zinc from storage in the vacuole to the cytoplasm (503 aa)
           
  0.754
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (3%) [HD]