CYB5 protein (Saccharomyces cerevisiae) - STRING interaction network
"CYB5" - Cytochrome b5, involved in the sterol and lipid biosynthesis pathways in Saccharomyces cerevisiae
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
CYB5Cytochrome b5, involved in the sterol and lipid biosynthesis pathways; acts as an electron donor to support sterol C5-6 desaturation; Membrane bound hemoprotein which function as an electron carrier for several membrane bound oxygenases. It plays a role in fatty-acid desaturation and is also involved in several steps of the sterol biosynthesis pathway, particularly in the 4- demethylation of the 4,4’-dimethyl zymosterol (120 aa)    
Predicted Functional Partners:
Putative cytochrome b5 reductase, localized to the plasma membrane; may be involved in regulation of lifespan; required for maturation of Gas1p and Pho8p, proposed to be involved in protein trafficking; NADH-dependent cytochrome b5 reductase that reduces coenzyme Q6 at the plasma membrane and mediates lifespan extension by calorie restriction by shifting fermentative to respiratory metabolism, probably through modulating the NAD(+)/NADH ratio (312 aa)
Cytochrome b reductase; not essential for viability; also detected in mitochondria; mutation in conserved NADH binding domain of the human ortholog results in type I methemoglobinemia; Electron donor reductase for cytochrome b5. The cytochrome b5/NADH cytochrome b5 reductase electron transfer system supports the catalytic activity of several sterol biosynthetic enzymes. Plays a role in bud morphology (284 aa)
Putative protein of unknown function, highly conserved across species and orthologous to human CYB5R4; null mutant displays reduced frequency of mitochondrial genome loss (312 aa)
Mitochondrial NADH-cytochrome b5 reductase, involved in ergosterol biosynthesis; The outer membrane form may mediate the reduction of outer membrane cytochrome b5, and the soluble inter-membrane space form may transfer electrons from external NADH to cytochrome c, thereby mediating an antimycin-insensitive, energy-coupled oxidation of external NADH by yeast mitochondria. Involved in the reduction of D-erythroascorbyl free radicals (302 aa)
NADP-cytochrome P450 reductase; involved in ergosterol biosynthesis; associated and coordinately regulated with Erg11p; This enzyme is required for electron transfer from NADP to cytochrome P450 in microsomes. It can also provide electron transfer to heme oxygenase and cytochrome B5. Involved in ergosterol biosynthesis. Has NADPH-dependent ferrireductase activity on the plasma membrane (691 aa)
C-22 sterol desaturase, a cytochrome P450 enzyme that catalyzes the formation of the C-22(23) double bond in the sterol side chain in ergosterol biosynthesis; may be a target of azole antifungal drugs; Required to form the C-22(23) double bond in the sterol side chain (538 aa)
Lipase required for intravacuolar lysis of autophagic bodies and Cvt bodies; targeted to intravacuolar vesicles during autophagy via the multivesicular body (MVB) pathway; Lipase which is essential for lysis of subvacuolar cytoplasm to vacuole targeted bodies and intravacuolar autophagic bodies. Involved in the lysis of intravacuolar multivesicular body (MVB) vesicles. The intravacuolar membrane disintegration by ATG15 is critical to life span extension (520 aa)
Delta(9) fatty acid desaturase, required for monounsaturated fatty acid synthesis and for normal distribution of mitochondria; Stearyl-CoA desaturase that utilizes O(2) and electrons from reduced cytochrome b5 to introduce the first double bond into saturated fatty acyl-CoA substrates (PubMed-1978720, PubMed-7947684). Catalyzes the insertion of a cis double bond at the delta-9 position into fatty acyl-CoA substrates including palmitoyl-CoA and stearoyl-CoA (PubMed-1978720). Required for the biosynthesis of membrane phospholipids, cholesterol esters and triglycerides (PubMed-1978720, Pu [...] (510 aa)
Lanosterol 14-alpha-demethylase; catalyzes the C-14 demethylation of lanosterol to form 4,4’’-dimethyl cholesta-8,14,24-triene-3-beta-ol in the ergosterol biosynthesis pathway; member of the cytochrome P450 family; associated and coordinately regula /.../th the P450 reductase Ncp1p; Catalyzes C14-demethylation of lanosterol which is critical for ergosterol biosynthesis. It transforms lanosterol into 4,4’-dimethyl cholesta-8,14,24-triene-3-beta-ol (530 aa)
Cytochrome b, mitochondrially encoded subunit of the ubiquinol-cytochrome c reductase complex which includes Cobp, Rip1p, Cyt1p, Cor1p, Qcr2p, Qcr6p, Qcr7p, Qcr8p, Qcr9p, and Qcr10p; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c (385 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (11%) [HD]