STRINGSTRING
MEP2 protein (Saccharomyces cerevisiae) - STRING interaction network
"MEP2" - Ammonium permease involved in regulation of pseudohyphal growth in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
MEP2Ammonium permease involved in regulation of pseudohyphal growth; belongs to a ubiquitous family of cytoplasmic membrane proteins that transport only ammonium (NH4+); expression is under the nitrogen catabolite repression regulation; Transporter for ammonium (both charged and uncharged NH3 and NH4) to use as a nitrogen source. The affinity of MEP2 is about twenty times higher than that of MEP1. MEP3 has the lowest affinity. Under ammonium limitation acts as an ammonium sensor, generating a signal that leads to pseudohyphal growth (499 aa)    
Predicted Functional Partners:
GAP1
General amino acid permease; Gap1p senses the presence of amino acid substrates to regulate localization to the plasma membrane when needed; Permease for various amino acids as well as for GABA. Can also transport L-cysteine and beta-alanine (602 aa)
     
   
  0.991
MEP1
Ammonium permease; belongs to a ubiquitous family of cytoplasmic membrane proteins that transport only ammonium (NH4+); expression is under the nitrogen catabolite repression regulation; Transporter for ammonium (both charged and uncharged NH3 and NH4) to use as a nitrogen source. Can also transport methylamine. The affinity of MEP1 is about twenty times lower than that of MEP2. MEP3 has the lowest affinity (492 aa)
   
 
0.954
MEP3
Ammonium permease of high capacity and low affinity; belongs to a ubiquitous family of cytoplasmic membrane proteins that transport only ammonium (NH4+); expression is under the nitrogen catabolite repression regulation ammonia permease; Transporter for ammonium (both charged and uncharged NH3 and NH4) to use as a nitrogen source. The affinity of MEP2 is about twenty times higher than that of MEP1. MEP3 has the lowest affinity (489 aa)
   
 
0.945
GPA2
Nucleotide binding alpha subunit of the heterotrimeric G protein; interacts with the receptor Gpr1p, has signaling role in response to nutrients; required for the recruitment of Ras-GTP at the plasma membrane and in the nucleus; Alpha subunit of the heterotrimeric guanine nucleotide- binding protein (G protein) involved in glucose-induced cAMP signaling. Binds to its cognate transmembrane receptor GPR1, which senses extracellular carbon sources, and activates cAMP-PKA signaling and governs diploid pseudohyphal differentiation and haploid invasive growth. The G protein beta-mimic protei [...] (449 aa)
       
 
  0.914
MSS11
Transcription factor involved in regulation of invasive growth and starch degradation; controls the activation of MUC1 and STA2 in response to nutritional signals; Transcription factor that regulates pseudohyphal differentiation, invasive growth, floculation, adhesion and starch metabolism in response to nutrient availability (758 aa)
       
 
  0.841
GLN1
Glutamine synthetase (GS), synthesizes glutamine from glutamate and ammonia; with Glt1p, forms the secondary pathway for glutamate biosynthesis from ammonia; expression regulated by nitrogen source and by amino acid limitation (370 aa)
         
  0.838
GLT1
NAD(+)-dependent glutamate synthase (GOGAT), synthesizes glutamate from glutamine and alpha-ketoglutarate; with Gln1p, forms the secondary pathway for glutamate biosynthesis from ammonia; expression regulated by nitrogen source; Forms L-glutamate from L-glutamine and 2-oxoglutarate. Represents an alternative pathway to L-glutamate dehydrogenase for the biosynthesis of L-glutamate. Participates with glutamine synthetase in ammonia assimilation processes. The enzyme is specific for NADH, L-glutamine and 2-oxoglutarate (2145 aa)
   
   
  0.829
GAT1
Transcriptional activator of genes involved in nitrogen catabolite repression; contains a GATA-1-type zinc finger DNA-binding motif; activity and localization regulated by nitrogen limitation and Ure2p; Positive regulator of multiple nitrogen catabolic genes (510 aa)
     
   
  0.815
RAS2
GTP-binding protein that regulates the nitrogen starvation response, sporulation, and filamentous growth; farnesylation and palmitoylation required for activity and localization to plasma membrane; homolog of mammalian Ras proto-oncogenes; The S.cerevisiae Ras proteins modulate the activity of the adenylate cyclase catalytic subunit and therefore affect the biosynthesis of cyclic-AMP (322 aa)
       
 
  0.811
DAL80
Negative regulator of genes in multiple nitrogen degradation pathways; expression is regulated by nitrogen levels and by Gln3p; member of the GATA-binding family, forms homodimers and heterodimers with Deh1p; Negative regulator of multiple nitrogen catabolic genes including the allantoin pathway genes (269 aa)
     
 
  0.805
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (8%) [HD]