STRINGSTRING
ATX1 protein (Saccharomyces cerevisiae) - STRING interaction network
"ATX1" - Cytosolic copper metallochaperone that transports copper to the secretory vesicle copper transporter Ccc2p for eventual insertion into Fet3p, which is a multicopper oxidase required for high-affinity iron uptake in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ATX1Cytosolic copper metallochaperone that transports copper to the secretory vesicle copper transporter Ccc2p for eventual insertion into Fet3p, which is a multicopper oxidase required for high-affinity iron uptake; Shuttles copper to the transport ATPase CCC2. Protects against oxygen toxicity (73 aa)    
Predicted Functional Partners:
CCC2
Cu(+2)-transporting P-type ATPase, required for export of copper from the cytosol into an extracytosolic compartment; has similarity to human proteins involved in Menkes and Wilsons diseases; Probably involved in copper transport and in the regulation of cellular copper level. Retrieves copper from the metallochaperone ATX1 and incorporates it into trans-Golgi vesicles (1004 aa)
     
  0.999
PCA1
Cadmium transporting P-type ATPase; may also have a role in copper and iron homeostasis; stabilized by Cd binding, which prevents ubiquitination; S288C and other lab strains contain a G970R mutation which eliminates Cd transport function; Cadmium transporting P-type ATPase which plays a critical role in cadmium resistance by extruding intracellular cadmium. Capable of high affinity copper ion binding, but not active copper ion transport. May play a role in copper resistance by chelating and sequestering copper ions (1216 aa)
     
  0.966
SOD1
Cytosolic copper-zinc superoxide dismutase; some mutations are analogous to those that cause ALS (amyotrophic lateral sclerosis) in humans; Destroys radicals which are normally produced within the cells and which are toxic to biological systems (154 aa)
       
 
  0.941
YGR021W
Putative protein of unknown function; the authentic, non-tagged protein is detected in highly purified mitochondria in high-throughput studies (290 aa)
           
  0.863
FET3
Ferro-O2-oxidoreductase required for high-affinity iron uptake and involved in mediating resistance to copper ion toxicity, belongs to class of integral membrane multicopper oxidases; Iron transport multicopper ferroxidase required for Fe(2+) ion high affinity uptake. Required to oxidize Fe(2+) and release it from the transporter. Essential component of copper- dependent iron transport (636 aa)
           
  0.826
FET5
Multicopper oxidase, integral membrane protein with similarity to Fet3p; may have a role in iron transport; Iron transport multicopper oxidase, which is required for Fe(2+) high affinity uptake. May be required to oxidize Fe(2+) and release it from the transporter. Essential component of copper-dependent iron transport (622 aa)
           
  0.810
BSD2
Heavy metal ion homeostasis protein, facilitates trafficking of Smf1p and Smf2p metal transporters to the vacuole where they are degraded, controls metal ion transport, prevents metal hyperaccumulation, functions in copper detoxification; Required for homeostasis of heavy metal ions such as cadmium, cobalt and copper. Controls metal ion transport and prevents metal hyperaccumulation by negatively regulating the SMF1 and SMF2 metal transport systems. Under manganese-replete conditions facilitates trafficking of SMF1 and SMF2 metal transporters to the vacuole where they are degraded (321 aa)
           
  0.775
ATX2
Golgi membrane protein involved in manganese homeostasis; overproduction suppresses the sod1 (copper, zinc superoxide dismutase) null mutation; Functions in the homeostasis of manganese ions (313 aa)
           
  0.766
PMR1
High affinity Ca2+/Mn2+ P-type ATPase required for Ca2+ and Mn2+ transport into Golgi; involved in Ca2+ dependent protein sorting and processing; mutations in human homolog ATP2C1 cause acantholytic skin condition Hailey-Hailey disease; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium. Has a role in the secretory pathway (950 aa)
           
  0.733
TKL1
Transketolase, similar to Tkl2p; catalyzes conversion of xylulose-5-phosphate and ribose-5-phosphate to sedoheptulose-7-phosphate and glyceraldehyde-3-phosphate in the pentose phosphate pathway; needed for synthesis of aromatic amino acids; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate (680 aa)
           
  0.721
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (6%) [HD]