STRINGSTRING
TRM112 protein (Saccharomyces cerevisiae) - STRING interaction network
"TRM112" - Subunit of tRNA methyltransferase in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
TRM112Subunit of tRNA methyltransferase (MTase) complexes in combination with Trm9p and Trm11p; subunit of complex with Mtq2p that methylates Sup45p (eRF1) in the ternary complex eRF1-eRF3-GTP; deletion confers resistance to zymocin; Acts as an activator of both rRNA/tRNA and protein methyltransferases. Together with methyltransferase MTQ2, required for the methylation of eRF1 on ’Gln-182’. Together with methyltransferase TRM11, required for the formation of 2- methylguanosine at position 10 (m2G10) in tRNA. Together with methyltransferase BUD23, required for the formation of 7- methylguanin [...] (135 aa)    
Predicted Functional Partners:
TRM11
Catalytic subunit of an adoMet-dependent tRNA methyltransferase complex (Trm11p-Trm112p), required for the methylation of the guanosine nucleotide at position 10 (m2G10) in tRNAs; contains a THUMP domain and a methyltransferase domain; Catalytic subunit of an S-adenosyl-L-methionine- dependent tRNA methyltransferase complex that mediates the methylation of the guanosine nucleotide at position 10 (m2G10) in tRNAs (433 aa)
     
  0.999
TRM9
tRNA methyltransferase, catalyzes esterification of modified uridine nucleotides in tRNA(Arg3) and tRNA(Glu), likely as part of a complex with Trm112p; deletion confers resistance to zymocin; Required for the methylation of the wobble bases at position 34 in tRNA. Appears to have a role in stress-response (279 aa)
     
 
  0.998
MTQ2
S-adenosylmethionine-dependent methyltransferase of the seven beta-strand family; subunit of complex with Trm112p that methylates translation release factor Sup45p (eRF1) in the ternary complex eRF1-eRF3-GTP; similar to E.coli PrmC; Methylates eRF1 on ’Gln-182’ using S-adenosyl L- methionine as methyl donor. eRF1 needs to be complexed to eRF3 in its GTP-bound form to be efficiently methylated (221 aa)
       
  0.998
BUD23
Methyltransferase, methylates residue G1575 of 18S rRNA; required for rRNA processing and nuclear export of 40S ribosomal subunits independently of methylation activity; diploid mutant displays random budding pattern; S-adenosyl-L-methionine-dependent methyltransferase that specifically methylates the N(7) position of guanine 1575 (m7G1575) in 18S rRNA. Requires the methyltransferase adapter protein TRM112 for full rRNA methyltransferase activity. Important for biogenesis end export of the 40S ribosomal subunit independent on its methyltransferase activity. Required for efficient cleav [...] (275 aa)
     
 
  0.993
SUP45
Polypeptide release factor (eRF1) in translation termination; mutant form acts as a recessive omnipotent suppressor; methylated by Mtq2p-Trm112p in ternary complex eRF1-eRF3-GTP; mutation of methylation site confers resistance to zymocin; Directs the termination of nascent peptide synthesis (translation) in response to the termination codons UAA, UAG and UGA (437 aa)
     
  0.969
SUP35
Translation termination factor eRF3, has a role in mRNA deadenylation and decay; altered protein conformation creates the [PSI(+)] prion that alters translational fidelity and results in a nonsense suppressor phenotype; Involved in translation termination. Stimulates the activity of ERF1. Binds guanine nucleotides. Recruited by polyadenylate-binding protein PAB1 to poly(A)-tails of mRNAs. Interaction with PAB1 is also required for regulation of normal mRNA decay through translation termination-coupled poly(A) shortening (685 aa)
     
 
  0.931
TRM12
S-adenosylmethionine-dependent methyltransferase of the seven beta-strand family; required for wybutosine formation in phenylalanine-accepting tRNA; S-adenosyl-L-methionine-dependent transferase that acts as a component of the wybutosine biosynthesis pathway. Wybutosine is a hyper modified guanosine with a tricyclic base found at the 3’-position adjacent to the anticodon of eukaryotic phenylalanine tRNA. Catalyzes the transfer of the alpha-amino-alpha- carboxypropyl (acp) group from S-adenosyl-L-methionine to the C-7 position of 4-demethylwyosine (imG-14) to produce wybutosine-86 (462 aa)
     
 
  0.925
TRM8
Noncatalytic subunit of a tRNA methyltransferase complex; Trm8p and Trm82p comprise an enzyme that catalyzes a methyl-transfer from S-adenosyl-l-methionine to the N(7) atom of guanine at position 46 in tRNA; Trm8 lacks catalytic activity if not boun /.../rm82p; Methyltransferase that catalyzes the formation of N(7)- methylguanine at position 46 (m7G46) in tRNA, a modification required to maintain stability of tRNAs; its absence resulting in tRNA decay. Both the D-stem and T-stem structures of tRNAs are required for efficient methyltransferase activity (286 aa)
     
 
  0.915
TRM82
Catalytic subunit of a tRNA methyltransferase complex; Trm8p and Trm82p comprise an enzyme that catalyzes a methyl-transfer from S-adenosyl-l-methionine to the N(7) atom of guanine at position 46 in tRNA; Trm8 lacks catalytic activity if not bound t /.../2p; Required for the formation of N(7)-methylguanine at position 46 (m7G46) in tRNA, a modification required to maintain stability of tRNAs; its absence resulting in tRNA decay. In the complex, it is required to stabilize and induce conformational changes of the catalytic subunit (444 aa)
     
 
  0.898
GCD14
Subunit of tRNA (1-methyladenosine) methyltransferase, with Gcd10p, required for the modification of the adenine at position 58 in tRNAs, especially tRNAi-Met; first identified as a negative regulator of GCN4 expression; Catalytic subunit of tRNA (adenine-N(1)-)- methyltransferase, which catalyzes the formation of N(1)- methyladenine at position 58 (m1A58) in initiator methionyl-tRNA. GCD14 is also required for repression of GCN4 mRNA translation by the upstream open reading frames (uORFs) under conditions of amino acid sufficiency (383 aa)
     
 
  0.894
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (6%) [HD]