STRINGSTRING
SPE2 protein (Saccharomyces cerevisiae) - STRING interaction network
"SPE2" - S-adenosylmethionine decarboxylase, required for the biosynthesis of spermidine and spermine in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SPE2S-adenosylmethionine decarboxylase, required for the biosynthesis of spermidine and spermine; cells lacking Spe2p require spermine or spermidine for growth in the presence of oxygen but not when grown anaerobically; S-adenosylmethionine decarboxylase is essential for normal growth, sporulation, maintenance of ds-RNA virus, biosynthesis of spermine and spermidine (396 aa)    
Predicted Functional Partners:
SPE4
Spermine synthase, required for the biosynthesis of spermine and also involved in biosynthesis of pantothenic acid (300 aa)
     
 
  0.994
SPE3
Spermidine synthase, involved in biosynthesis of spermidine and also in biosynthesis of pantothenic acid; spermidine is required for growth of wild-type cells (293 aa)
     
 
  0.993
SPE1
Ornithine decarboxylase, catalyzes the first step in polyamine biosynthesis; degraded in a proteasome-dependent manner in the presence of excess polyamines; deletion decreases lifespan, and increases necrotic cell death and ROS generation (466 aa)
     
 
  0.917
SAM1
S-adenosylmethionine synthetase, catalyzes transfer of the adenosyl group of ATP to the sulfur atom of methionine; one of two differentially regulated isozymes (Sam1p and Sam2p); Catalyzes the formation of S-adenosylmethionine from methionine and ATP (382 aa)
     
 
  0.907
SAM2
S-adenosylmethionine synthetase, catalyzes transfer of the adenosyl group of ATP to the sulfur atom of methionine; one of two differentially regulated isozymes (Sam1p and Sam2p); Catalyzes the formation of S-adenosylmethionine from methionine and ATP (384 aa)
     
 
  0.907
NIT2
Nit protein, one of two proteins in S. cerevisiae with similarity to the Nit domain of NitFhit from fly and worm and to the mouse and human Nit protein which interacts with the Fhit tumor suppressor; nitrilase superfamily member; Hydrolase that binds alpha-ketoglutarate and oxaloacetate. Has extremely low omega-amidase activity (in vitro) when using alpha-ketoglutaramate as substrate. The natural substrate has not been identified yet (307 aa)
       
 
  0.752
HNT2
Dinucleoside triphosphate hydrolase; has similarity to the tumor suppressor FHIT and belongs to the histidine triad (HIT) superfamily of nucleotide-binding proteins; Cleaves A-5’-PPP-5’A to yield AMP and ADP. Can cleave all dinucleoside polyphosphates, provided the phosphate chain contains at least 3 phosphates and that 1 of the 2 bases composing the nucleotide is a purine. Is most effective on dinucleoside triphosphates. Negatively regulates intracellular dinucleoside polyphosphate levels, which elevate following heat shock (217 aa)
       
      0.748
SEO1
Putative permease, member of the allantoate transporter subfamily of the major facilitator superfamily; mutation confers resistance to ethionine sulfoxide; Not known; suppressor of sulfoxide ethionine resistance (593 aa)
       
 
  0.709
MRS1
Protein required for the splicing of two mitochondrial group I introns (BI3 in COB and AI5beta in COX1); forms a splicing complex, containing four subunits of Mrs1p and two subunits of the BI3-encoded maturase, that binds to the BI3 RNA; Function in mitochondrial RNA splicing in the excision of mitochondrial group I introns aI5 beta from COX1 and bI3 from COB transcripts and thus would be involved in obtaining the correct structure of the intron, to allow the RNA catalyzed reactions to occur (363 aa)
       
      0.699
MEU1
Methylthioadenosine phosphorylase (MTAP), catalyzes the initial step in the methionine salvage pathway; affects polyamine biosynthesis through regulation of ornithine decarboxylase (Spe1p) activity; regulates ADH2 gene expression; Catalyzes the reversible phosphorylation of S-methyl-5’- thioadenosine (MTA) to adenine and 5-methylthioribose-1-phosphate. Involved in the breakdown of MTA, a major by-product of polyamine biosynthesis. Responsible for the first step in the methionine salvage pathway after MTA has been generated from S- adenosylmethionine. Has broad substrate specificity wit [...] (337 aa)
     
 
  0.686
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (7%) [HD]