STRINGSTRING
RIB4 protein (Saccharomyces cerevisiae) - STRING interaction network
"RIB4" - Lumazine synthase (6,7-dimethyl-8-ribityllumazine synthase, also known as DMRL synthase) in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
RIB4Lumazine synthase (6,7-dimethyl-8-ribityllumazine synthase, also known as DMRL synthase); catalyzes synthesis of immediate precursor to riboflavin; Catalyzes the formation of 6,7-dimethyl-8- ribityllumazine by condensation of 5-amino-6-(D- ribitylamino)uracil with 3,4-dihydroxy-2-butanone 4-phosphate. This is the penultimate step in the biosynthesis of riboflavin (169 aa)    
Predicted Functional Partners:
RIB3
3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBP synthase), required for riboflavin biosynthesis from ribulose-5-phosphate, also has an unrelated function in mitochondrial respiration; Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate (208 aa)
 
  0.999
RIB5
Riboflavin synthase; catalyzes the last step of the riboflavin biosynthesis pathway; Catalyzes the dismutation of two molecules of 6,7- dimethyl-8-ribityllumazine, resulting in the formation of riboflavin and 5-amino-6-(D-ribitylamino)uracil (238 aa)
  0.998
RIB1
GTP cyclohydrolase II; catalyzes the first step of the riboflavin biosynthesis pathway; Catalyzes the conversion of GTP to 2,5-diamino-6- ribosylamino-4(3H)-pyrimidinone 5’-phosphate (DARP), formate and pyrophosphate (345 aa)
 
 
  0.990
RIB2
Bifunctional enzyme with DRAP deaminase and tRNA-pseudouridine synthase activity; the deaminase catalyzes the third step in riboflavin biosynthesis and the synthase catalyzes formation of pseudouridine at position 32 in cytoplasmic tRNAs; Responsible for synthesis of pseudouridine from uracil- 32 in cytoplasmic transfer RNAs (591 aa)
   
  0.972
RIB7
Diaminohydroxyphoshoribosylaminopyrimidine deaminase; catalyzes the second step of the riboflavin biosynthesis pathway; Catalyzes an early step in riboflavin biosynthesis, the NADPH-dependent reduction of the ribose side chain of 2,5-diamino- 6-ribosylamino-4(3H)-pyrimidinone 5’-phosphate, yielding 2,5- diamino-6-ribitylamino-4(3H)-pyrimidinone 5’-phosphate (244 aa)
   
  0.943
URA1
Dihydroorotate dehydrogenase, catalyzes the fourth enzymatic step in the de novo biosynthesis of pyrimidines, converting dihydroorotic acid into orotic acid; Catalyzes the conversion of dihydroorotate to orotate with fumarate as the electron acceptor. Molecular oxygen can replace fumarate in vitro. Does not use oxaloacetate or NAD or NADP as electron acceptors (314 aa)
   
   
  0.856
FMN1
Riboflavin kinase, phosphorylates riboflavin to form riboflavin monophosphate (FMN), which is a necessary cofactor for many enzymes; localizes to microsomes and to the mitochondrial inner membrane; Catalyzes the phosphorylation of riboflavin (vitamin B2) to form flavin mononucleotide (FMN) coenzyme (218 aa)
   
 
  0.784
CAP1
Alpha subunit of the capping protein (CP) heterodimer (Cap1p and Cap2p) which binds to the barbed ends of actin filaments preventing further polymerization; localized predominantly to cortical actin patches; F-actin-capping proteins bind in a Ca(2+)-independent manner to the fast growing ends of actin filaments (barbed end) thereby blocking the exchange of subunits at these ends. Unlike other capping proteins (such as gelsolin and severin), these proteins do not sever actin filaments (268 aa)
       
      0.758
ARO1
Pentafunctional arom protein, catalyzes steps 2 through 6 in the biosynthesis of chorismate, which is a precursor to aromatic amino acids; The AROM polypeptide catalyzes 5 consecutive enzymatic reactions in prechorismate polyaromatic amino acid biosynthesis (1588 aa)
         
  0.721
MCH5
Plasma membrane riboflavin transporter; facilitates the uptake of vitamin B2; required for FAD-dependent processes; sequence similarity to mammalian monocarboxylate permeases, however mutants are not deficient in monocarboxylate transport; Riboflavin transporter involved in riboflavin (vitamin B2) uptake. Does not act in the transport of monocarboxylic acids across the plasma membrane (521 aa)
       
 
  0.685
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (14%) [HD]