STRINGSTRING
DNL4 protein (Saccharomyces cerevisiae) - STRING interaction network
"DNL4" - DNA ligase required for nonhomologous end-joining in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
DNL4DNA ligase required for nonhomologous end-joining (NHEJ), forms stable heterodimer with required cofactor Lif1p, interacts with Nej1p; involved in meiosis, not essential for vegetative growth; Has minor DNA joining activity. Can act on oligo(PDT)/poly(rA) substrate (944 aa)    
Predicted Functional Partners:
LIF1
Component of the DNA ligase IV complex that mediates nonhomologous end joining in DNA double-strand break repair; physically interacts with Dnl4p and Nej1p; homologous to mammalian XRCC4 protein; Stabilizes DNL4. Involved in non-homologous repair of DNA double-strand breaks (421 aa)
       
  0.999
YKU80
Subunit of the telomeric Ku complex (Yku70p-Yku80p), involved in telomere length maintenance, structure and telomere position effect; relocates to sites of double-strand cleavage to promote nonhomologous end joining during DSB repair; Single-stranded DNA-dependent ATP-dependent helicase. Involved in non-homologous end joining (NHEJ) DNA double strand break repair. DNA-binding is sequence-independent but has a high affinity to nicks in double-stranded DNA and to the ends of duplex DNA. Binds to naturally occurring chromosomal ends, and therefore provides chromosomal end protection. Appe [...] (629 aa)
     
  0.996
YKU70
Subunit of the telomeric Ku complex (Yku70p-Yku80p), involved in telomere length maintenance, structure and telomere position effect; relocates to sites of double-strand cleavage to promote nonhomologous end joining during DSB repair; Single-stranded DNA-dependent ATP-dependent helicase. Involved in non-homologous end joining (NHEJ) DNA double strand break repair. DNA-binding is sequence-independent but has a high affinity to nicks in double-stranded DNA and to the ends of duplex DNA. Binds to naturally occurring chromosomal ends, and therefore provides chromosomal end protection. Appe [...] (602 aa)
     
  0.995
POL4
DNA polymerase IV, undergoes pair-wise interactions with Dnl4p-Lif1p and Rad27p to mediate repair of DNA double-strand breaks by non-homologous end joining (NHEJ); homologous to mammalian DNA polymerase beta; Repair polymerase. Involved in gap-filling in DNA nonhomologous end joining (NHEJ) required for double-strand break repair. Seems to conduct DNA synthesis in a stepwise distributive fashion rather than in a processive fashion as for other DNA polymerases. Preferentially acts upon short gaps formed by the alignment of linear duplexes with complementary single-strand ends. Required [...] (582 aa)
   
  0.994
NEJ1
Protein involved in regulation of nonhomologous end joining; interacts with DNA ligase IV components Dnl4p and Lif1p; repressed by MAT heterozygosity; regulates cellular distribution of Lif1p; Involved in non-homologous end joining (NHEJ). Facilitates the transport of LIF1 into the nucleus, where it can interact with DNA ligase DNL4 to repair double-strand breaks (DSB). Mediates mating-type regulation of NHEJ. Prevents chromosome circularisation by NHEJ in absence of telomerase (342 aa)
       
  0.993
MRE11
Subunit of a complex with Rad50p and Xrs2p (MRX complex) that functions in repair of DNA double-strand breaks and in telomere stability, exhibits nuclease activity that appears to be required for MRX function; widely conserved; Involved in DNA double-strand break repair (DSBR). Possesses single-strand endonuclease activity and double-strand- specific 3’-5’ exonuclease activity. Also involved in meiotic DSB processing (692 aa)
     
 
  0.986
RAD52
Protein that stimulates strand exchange by facilitating Rad51p binding to single-stranded DNA; anneals complementary single-stranded DNA; involved in the repair of double-strand breaks in DNA during vegetative growth and meiosis; Involved in DNA double-strand break (DSB) repair and recombination. Promotes the annealing of complementary single- stranded DNA and by stimulation of the RAD51 recombinase (471 aa)
       
 
  0.977
RAD54
DNA-dependent ATPase, stimulates strand exchange by modifying the topology of double-stranded DNA; involved in the recombinational repair of double-strand breaks in DNA during vegetative growth and meiosis; member of the SWI/SNF family; Involved in DNA repair and mitotic recombination. Functions in the recombinational DNA repair (RAD52) pathway. Dissociates RAD51 from nucleoprotein filaments formed on dsDNA. Could be involved in the turnover of RAD51 protein-dsDNA filaments. Addition of RAD54 overcomes inhibition of DNA strand exchange by RAD51 bound to substrate dsDNA. Species prefere [...] (898 aa)
     
 
  0.967
POL30
Proliferating cell nuclear antigen (PCNA), functions as the sliding clamp for DNA polymerase delta; may function as a docking site for other proteins required for mitotic and meiotic chromosomal DNA replication and for DNA repair; This protein is an auxiliary protein of DNA polymerase delta and is involved in the control of eukaryotic DNA replication by increasing the polymerase’s processibility during elongation of the leading strand. Involved in DNA repair (258 aa)
     
 
  0.964
RAD50
Subunit of MRX complex, with Mre11p and Xrs2p, involved in processing double-strand DNA breaks in vegetative cells, initiation of meiotic DSBs, telomere maintenance, and nonhomologous end joining; Involved in DNA double-strand break repair (DSBR). The rad50/mre11 complex possesses single-strand endonuclease activity and ATP-dependent double-strand-specific exonuclease activity. Rad50 provides ATP-dependent control of mre11 by unwinding and/or repositioning DNA ends into the mre11 active site (1312 aa)
     
   
  0.963
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (5%) [HD]