STRINGSTRING
HST3 protein (Saccharomyces cerevisiae) - STRING interaction network
"HST3" - Member of the Sir2 family of NAD(+)-dependent protein deacetylases in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
HST3Member of the Sir2 family of NAD(+)-dependent protein deacetylases; involved along with Hst4p in telomeric silencing, cell cycle progression, radiation resistance, genomic stability and short-chain fatty acid metabolism; NAD-dependent histone deacetylase, which contributes together with HST4 to histone H3 ’Lys-56’ deacetylation, regulation of telomeric silencing, proper cell cycle progression, DNA damage control, DNA recombination, and genomic maintenance (447 aa)    
Predicted Functional Partners:
NMA1
Nicotinic acid mononucleotide adenylyltransferase, involved in pathways of NAD biosynthesis, including the de novo, NAD(+) salvage, and nicotinamide riboside salvage pathways; Catalyzes the formation of NAD(+) from nicotinamide mononucleotide (NMN) and ATP. Can also use the deamidated form; nicotinic acid mononucleotide (NaMN) as substrate to form deamido- NAD(+) (NaAD). Key enzyme in both de novo and salvage pathways for NAD(+) biosynthesis. Predominantly acts in the salvage pathways via NMN (401 aa)
   
  0.950
NMA2
Nicotinic acid mononucleotide adenylyltransferase, involved in de novo and salvage synthesis of NAD(+); Catalyzes the formation of NAD(+) from nicotinamide mononucleotide (NMN) and ATP (PubMed-12597897). Can also use the deamidated form; nicotinic acid mononucleotide (NaMN) as substrate to form deamido-NAD(+) (NaAD). Key enzyme in both de novo and salvage pathways for NAD(+) biosynthesis (By similarity). Predominantly acts in the salvage pathways via NMN (PubMed-11884393) (395 aa)
   
  0.942
PNC1
Nicotinamidase that converts nicotinamide to nicotinic acid as part of the NAD(+) salvage pathway, required for life span extension by calorie restriction; PNC1 expression responds to all known stimuli that extend replicative life span; Catalyzes the deamidation of nicotinamide, an early step in the NAD(+) salvage pathway. Positively regulates SIR2-mediated silencing and longevity by preventing the accumulation of intracellular nicotinamide, an inhibitor of SIR2, during times of stress. Acts also on nicotinyl hydroxamate (216 aa)
       
  0.930
QNS1
Glutamine-dependent NAD(+) synthetase, essential for the formation of NAD(+) from nicotinic acid adenine dinucleotide (714 aa)
   
  0.929
UTR1
ATP-NADH kinase; phosphorylates both NAD and NADH; active as a hexamer; enhances the activity of ferric reductase (Fre1p); Specifically phosphorylates NAD in the presence of ATP, dATP, or CTP as phosphoryl donors (530 aa)
       
  0.907
PNP1
Purine nucleoside phosphorylase, specifically metabolizes inosine and guanosine nucleosides; involved in the nicotinamide riboside salvage pathway; The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta- (deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate. Cleaves guanosine and inosine (By similarity) (311 aa)
     
  0.904
URH1
Uridine nucleosidase (uridine-cytidine N-ribohydrolase), cleaves N-glycosidic bonds in nucleosides; involved in the pyrimidine salvage and nicotinamide riboside salvage pathways; Also acts on cytidine (340 aa)
         
  0.902
NPY1
NADH diphosphatase (pyrophosphatase), hydrolyzes the pyrophosphate linkage in NADH and related nucleotides; localizes to peroxisomes (384 aa)
       
    0.902
POF1
Protein involved in the filamentation pathway; interacts physically with Kss1p and suppresses the filamentation defect of a kss1 deletion; Catalyzes the formation of NAD(+) from nicotinamide mononucleotide (NMN) and ATP. Involved in the salvage pathway for NAD(+) biosynthesis via NMN (PubMed-24759102). Involved in the filamentation pathway. Suppresses the filamentation defect of a KSS1 deletion (PubMed-21460040) (258 aa)
         
    0.900
RTT109
Histone acetyltransferase critical for cell survival in the presence of DNA damage during S phase; acetylates H3-K56 and H3-K9; involved in non-homologous end joining and in regulation of Ty1 transposition; interacts physically with Vps75p; Required for acetylation of ’Lys-56’ of histone H3 (H3K56ac) which occurs in S phase and disappears during G(2)/M phase of the cell cycle and is involved in transcription DNA repair process. H3K56 acetylation weakens of the interaction between the histone core and the surrounding DNA in the nucleosomal particle and drives chromatin disassembly. Invo [...] (436 aa)
       
 
  0.896
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (8%) [HD]